101 research outputs found

    Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity

    Get PDF
    AbstractIncubation of glutathione (GSH) depleted mouse erythrocytes with the oxidants phenylhydrazine, acrolein, divicine and isouramil resulted in the release of free iron and in lipid peroxidation and hemolysis. The addition of the flavonoid quercetin, which chelates iron and penetrates erythrocytes, resulted in remarkable protection against lipid peroxidation and hemolysis. The protection seems to be due to intracellular chelation of iron, since a semi-stoichiometric ratio between released iron and the amount of quercetin necessary to prevent lipid peroxidation and hemolysis was found. Incubation of GSH depleted human erythrocytes with divicine and isouramil did not induce lipid peroxidation and hemolysis in spite of a substantial release of iron. However, divicine and isouramil produced alterations of membrane proteins, such as spectrin and band 3, as well as formation of senescent cell antigen. The addition of quercetin prevented these alterations

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Iron release and membrane damage in erythrocytes exposed to oxidizing agents, phenylhydrazine, divicine and isouramil.

    No full text
    Mouse erythrocytes were incubated with oxidizing agents, phenylhydrazine, divicine and isouramil. With all the oxidants a rapid release of iron in a desferrioxamine (DFO)-chelatable form was seen and it was accompanied by methaemoglobin formation. If the erythrocytes were depleted of GSH by a short preincubation with diethyl maleate, the release of iron was accompanied by lipid peroxidation and, subsequently, haemolysis. GSH depletion by itself did not induce iron release, methaemoglobin formation, lipid peroxidation or haemolysis. Rather, the fate of the cell in which iron is released depended on the intracellular availability of GSH. In addition, iron release was higher in depleted cells than in native ones, suggesting a role for GSH in preventing iron release when oxidative stress is imposed by the oxidants. Iron release preceded lipid peroxidation. The latter was prevented when the erythrocytes were preloaded with DFO in such a way (preincubation with 10 mM-DFO) that the intracellular concentration was equivalent to that of the released iron, but not when the intracellular DFO was lower (preincubation with 0.1 mM-DFO). Extracellular DFO did not affect lipid peroxidation and haemolysis, suggesting again that the observed events occur intracellularly (intracellular chelation of released iron). The relevance of iron release from iron complexes in the mechanisms of cellular damage induced by oxidative stress is discussed

    Iron mobilization from crocidolite as enhancer of collagen content in rat lung fibroblasts

    No full text
    Asbestos exposure causes pulmonary fibrosis by mechanisms that remain uncertain. There is increasing evidence that iron from asbestos is responsible for many of its effects. In this paper, we investigated the effect of iron mobilized from crocidolite asbestos on collagen content in rat lung fibroblast cultures under serum-free conditions. Crocidolite (2, 4, 6 microg/cm2 well) increased collagen content in a dose-dependent manner (+42 +/- 8, +92 +/- 10, and +129 +/- 13% vs controls). This effect was specific for collagen, since it did not alter total protein content and was inhibited by the iron chelator deferoxamine (DFO). Preincubation of crocidolite with citrate (1 mM) for 48 hr resulted in iron mobilization (51 microM) and increased collagen production (>3-fold) in treated cells. These effects occurred without the intervention of serum factors. The absence of cell damage, proliferation or lipid peroxidation leads to the supposition that iron from crocidolite per se may act as a profibrogenic agent. Although the in vivo participation of other cells and factors cannot be excluded, we conclude that iron released from crocidolite plays a role in collagen increase occurring during asbestosis

    Iron released from an erythrocyte lysate by oxidative stress is diffusible and in redox active form.

    No full text
    AbstractThe incubation of a ghost-free erythrocyte lysate with the oxidizing agent phenylhydrazine resulted in both methemoglobin formation and release of iron in a desferrioxamine (DFO)-chelatable form. The released iron was diffusible, as shown by a dialysis carried out simultaneously with the incubation. When the dialysate was added to erythrocyte ghosts or to microsomes from liver or brain, lipid peroxidation developed in the membranes, indicating that the diffusible iron was in a redox active form. The addition of ATP to the lysate markedly increased both iron diffusion and lipid peroxidation in the membranes subsequently added to the dialysate. The possible implication of these data in some well known pathologies is discussed
    corecore