14 research outputs found

    Design of First-Order Optimization Algorithms via Sum-of-Squares Programming

    Full text link
    In this paper, we propose a framework based on sum-of-squares programming to design iterative first-order optimization algorithms for smooth and strongly convex problems. Our starting point is to develop a polynomial matrix inequality as a sufficient condition for exponential convergence of the algorithm. The entries of this matrix are polynomial functions of the unknown parameters (exponential decay rate, stepsize, momentum coefficient, etc.). We then formulate a polynomial optimization, in which the objective is to optimize the exponential decay rate over the parameters of the algorithm. Finally, we use sum-of-squares programming as a tractable relaxation of the proposed polynomial optimization problem. We illustrate the utility of the proposed framework by designing a first-order algorithm that shares the same structure as Nesterov's accelerated gradient method
    corecore