8 research outputs found
Rainfall frequency analysis for ungauged regions using remotely sensed precipitation information
Rainfall frequency analysis, which is an important tool in hydrologic engineering, has been traditionally performed using information from gauge observations. This approach has proven to be a useful tool in planning and design for the regions where sufficient observational data are available. However, in many parts of the world where ground-based observations are sparse and limited in length, the effectiveness of statistical methods for such applications is highly limited. The sparse gauge networks over those regions, especially over remote areas and high-elevation regions, cannot represent the spatiotemporal variability of extreme rainfall events and hence preclude developing depth-duration-frequency curves (DDF) for rainfall frequency analysis. In this study, the PERSIANN-CDR dataset is used to propose a mechanism, by which satellite precipitation information could be used for rainfall frequency analysis and development of DDF curves. In the proposed framework, we first adjust the extreme precipitation time series estimated by PERSIANN-CDR using an elevation-based correction function, then use the adjusted dataset to develop DDF curves. As a proof of concept, we have implemented our proposed approach in 20 river basins in the United States with different climatic conditions and elevations. Bias adjustment results indicate that the correction model can significantly reduce the biases in PERSIANN-CDR estimates of annual maximum series, especially for high elevation regions. Comparison of the extracted DDF curves from both the original and adjusted PERSIANN-CDR data with the reported DDF curves from NOAA Atlas 14 shows that the extreme percentiles from the corrected PERSIANN-CDR are consistently closer to the gauge-based estimates at the tested basins. The median relative errors of the frequency estimates at the studied basins were less than 20% in most cases. Our proposed framework has the potential for constructing DDF curves for regions with limited or sparse gauge-based observations using remotely sensed precipitation information, and the spatiotemporal resolution of the adjusted PERSIANN-CDR data provides valuable information for various applications in remote and high elevation areas
An enhanced artificial neural network with a shuffled complex evolutionary global optimization with principal component analysis
The classical Back-Propagation (BP) scheme with gradient-based optimization in training Artificial Neural Networks (ANNs) suffers from many drawbacks, such as the premature convergence, and the tendency of being trapped in local optimums. Therefore, as an alternative for the BP and gradient-based optimization schemes, various Evolutionary Algorithms (EAs), i.e., Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Simulated Annealing (SA), and Differential Evolution (DE), have gained popularity in the field of ANN weight training. This study applied a new efficient and effective Shuffled Complex Evolutionary Global Optimization Algorithm with Principal Component Analysis – University of California Irvine (SP-UCI) to the weight training process of a three-layer feed-forward ANN. A large-scale numerical comparison is conducted among the SP-UCI-, PSO-, GA-, SA-, and DE-based ANNs on 17 benchmark, complex, and real-world datasets. Results show that SP-UCI-based ANN outperforms other EA-based ANNs in the context of convergence and generalization. Results suggest that the SP-UCI algorithm possesses good potential in support of the weight training of ANN in real-word problems. In addition, the suitability of different kinds of EAs on training ANN is discussed. The large-scale comparison experiments conducted in this paper are fundamental references for selecting proper ANN weight training algorithms in practice
Recommended from our members
Rainfall frequency analysis for ungauged regions using remotely sensed precipitation information
Rainfall frequency analysis, which is an important tool in hydrologic engineering, has been traditionally performed using information from gauge observations. This approach has proven to be a useful tool in planning and design for the regions where sufficient observational data are available. However, in many parts of the world where ground-based observations are sparse and limited in length, the effectiveness of statistical methods for such applications is highly limited. The sparse gauge networks over those regions, especially over remote areas and high-elevation regions, cannot represent the spatiotemporal variability of extreme rainfall events and hence preclude developing depth-duration-frequency curves (DDF) for rainfall frequency analysis. In this study, the PERSIANN-CDR dataset is used to propose a mechanism, by which satellite precipitation information could be used for rainfall frequency analysis and development of DDF curves. In the proposed framework, we first adjust the extreme precipitation time series estimated by PERSIANN-CDR using an elevation-based correction function, then use the adjusted dataset to develop DDF curves. As a proof of concept, we have implemented our proposed approach in 20 river basins in the United States with different climatic conditions and elevations. Bias adjustment results indicate that the correction model can significantly reduce the biases in PERSIANN-CDR estimates of annual maximum series, especially for high elevation regions. Comparison of the extracted DDF curves from both the original and adjusted PERSIANN-CDR data with the reported DDF curves from NOAA Atlas 14 shows that the extreme percentiles from the corrected PERSIANN-CDR are consistently closer to the gauge-based estimates at the tested basins. The median relative errors of the frequency estimates at the studied basins were less than 20% in most cases. Our proposed framework has the potential for constructing DDF curves for regions with limited or sparse gauge-based observations using remotely sensed precipitation information, and the spatiotemporal resolution of the adjusted PERSIANN-CDR data provides valuable information for various applications in remote and high elevation areas
Recommended from our members
PERSIANN-CNN: Precipitation estimation from remotely sensed information using artificial neural networks–convolutional neural networks
Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters such as floods. Despite having highŠresolution satellite information, precipitation estimation from remotely sensed data still suffers from methodological limitations. StateŠofŠtheŠart deep learning algorithms, renowned for their skill in learning accurate patterns within large and complex datasets, appear well suited to the task of precipitation estimation, given the ample amount of highŠresolution satellite data. In this study, the effectiveness of applying convolutional neural networks (CNNs) together with the infrared (IR) and water vapor (WV) channels from geostationary satellites for estimating precipitation rate is explored. The proposed model performances are evaluated during summer 2012 and 2013 over central CONUS at the spatial resolution of 0.088 and at an hourly time scale. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)–Cloud Classification System (CCS), which is an operational satelliteŠbased product, and PERSIANN–Stacked Denoising Autoencoder (PERSIANNŠSDAE) are employed as baseline models. Results demonstrate that the proposed model (PERSIANNŠCNN) provides more accurate rainfall estimates compared to the baseline models at various temporal and spatial scales. Specifically, PERSIANNŠCNN outperforms PERSIANNŠCCS (and PERSIANNŠSDAE) by 54% (and 23%) in the critical success index (CSI), demonstrating the detection skills of the model. Furthermore, the rootŠmean-square error (RMSE) of the rainfall estimates with respect to the National Centers for Environmental Prediction (NCEP) Stage IV gauge–radar data, for PERSIANNŠCNN was lower than that of PERSIANNŠCCS (PERSIANNŠSDAE) by 37% (14%), showing the estimation accuracy of the proposed model
Recommended from our members
An enhanced artificial neural network with a shuffled complex evolutionary global optimization with principal component analysis
The classical Back-Propagation (BP) scheme with gradient-based optimization in training Artificial Neural Networks (ANNs) suffers from many drawbacks, such as the premature convergence, and the tendency of being trapped in local optimums. Therefore, as an alternative for the BP and gradient-based optimization schemes, various Evolutionary Algorithms (EAs), i.e., Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Simulated Annealing (SA), and Differential Evolution (DE), have gained popularity in the field of ANN weight training. This study applied a new efficient and effective Shuffled Complex Evolutionary Global Optimization Algorithm with Principal Component Analysis – University of California Irvine (SP-UCI) to the weight training process of a three-layer feed-forward ANN. A large-scale numerical comparison is conducted among the SP-UCI-, PSO-, GA-, SA-, and DE-based ANNs on 17 benchmark, complex, and real-world datasets. Results show that SP-UCI-based ANN outperforms other EA-based ANNs in the context of convergence and generalization. Results suggest that the SP-UCI algorithm possesses good potential in support of the weight training of ANN in real-word problems. In addition, the suitability of different kinds of EAs on training ANN is discussed. The large-scale comparison experiments conducted in this paper are fundamental references for selecting proper ANN weight training algorithms in practice
Recommended from our members
Evaluation of PERSIANN-CDR constructed using GPCP V2.2 and V2.3 and a comparison with TRMM 3B42 V7 and CPC unified gauge-based analysis in global scale
Providing reliable long-term global precipitation records at high spatial and temporal resolutions is crucial for climatological studies. Satellite-based precipitation estimations are a promising alternative to rain gauges for providing homogeneous precipitation information. Most satellite-based precipitation products suffer from short-term data records, which make them unsuitable for various climatological and hydrological applications. However, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) provides more than 35 years of precipitation records at 0.25° × 0.25° spatial and daily temporal resolutions. The PERSIANN-CDR algorithm uses monthly Global Precipitation Climatology Project (GPCP) data, which has been recently updated to version 2.3, for reducing the biases in the output of the PERSIANN model. In this study, we constructed PERSIANN-CDR using the newest version of GPCP (V2.3). We compared the PERSIANN-CDR dataset that is constructed using GPCP V2.3 (from here on referred to as PERSIANN-CDR V2.3) with the PERSIANN-CDR constructed using GPCP V2.2 (from here on PERSIANN-CDR V2.2), at monthly and daily scales for the period from 2009 to 2013. First, we discuss the changes between PERSIANN-CDR V2.3 and V2.2 over the land and ocean. Second, we evaluate the improvements in PERSIANN-CDR V2.3 with respect to the Climate Prediction Center (CPC) unified gauge-based analysis, a gauged-based reference, and Tropical Rainfall Measuring Mission (TRMM 3B42 V7), a commonly used satellite reference, at monthly and daily scales. The results show noticeable differences between PERSIANN-CDR V2.3 and V2.2 over oceans between 40° and 60° latitude in both the northern and southern hemispheres. Monthly and daily scale comparisons of the two bias-adjusted versions of PERSIANN-CDR with the above-mentioned references emphasize that PERSIANN-CDR V2.3 has improved mostly over the global land area, especially over the CONUS and Australia. The updated PERSIANN-CDR V2.3 data has replaced V2.2 data for the 2009-2013 period on CHRS data portal and NOAA National Centers for Environmental Information (NCEI) Program