2,343 research outputs found

    Asymptotically Free Yang-Mills Classical Mechanics with Self-Linked Orbits

    Get PDF
    We construct a classical mechanics Hamiltonian which exhibits spontaneous symmetry breaking akin the Coleman-Weinberg mechanism, dimensional transmutation, and asymptotically free self-similarity congruent with the beta-function of four dimensional Yang-Mills theory. Its classical equations of motion support stable periodic orbits and in a three dimensional projection these orbits are self-linked into topologically nontrivial, toroidal knots.Comment: 9 pages incl. 5 fig

    Comment on gauge choices and physical variables in QED

    Get PDF
    We consider possible definitions of physical variables in QED. We demonstrate that the condition ∂iAi\partial_i A_i=0=0 is the most convenient one because it leads to path integral over physical components with local action. However, other choices, as A3=0A_3=0, are also possible. The standard expression for configuration space path integral in A3=0A_3=0 gauge is obtained starting with reduced phase space formulation. Contrary to the claims of the paper [M.Lavelle and D.McMullan,Phys. Lett. B316 (1993)172] the A3=0A_3=0 gauge is not overconstrained.Comment: 4 pages, SPbU-IP-94-8, Late

    Lattice Gauge Fixing, Gribov Copies and BRST Symmetry

    Get PDF
    We show that a modification of the BRST lattice quantization allows to circumvent an old paradox, formulated by Neuberger, related to lattice Gribov copies and non-perturbative BRST invariance. In the continuum limit the usual BRST formulation is recovered.Comment: 7 pages, LaTe

    Collisions of protons with light nuclei shed new light on nucleon structure

    Full text link
    The high rates of multi-parton interactions at the LHC can provide a unique opportunity to study the multi-parton structure of the hadron. To this purpose high energy collisions of protons with nuclei are particularly suitable. The rates of multi-parton interactions depend in fact both on the partonic multiplicities and on the distributions of partons in transverse space, which produce different effects on the cross section in pA collisions, as a function of the atomic mass number A. Differently with respect to the case of multi-parton interactions in pp collisions, the possibility of changing the atomic mass number provides thus an additional handle to distinguish the diverse contributions. Some relevant features of double parton interactions in pD collisions have been discussed in a previous paper. In the present paper we show how the effects of double and triple correlation terms of the multi-parton structure can be disentangled, by comparing the rates of multiple parton interactions in collisions of protons with D, Tritium and 3He.Comment: 50 pages, 13 figure

    Magnetic Geometry and the Confinement of Electrically Conducting Plasmas

    Get PDF
    We develop an effective field theory approach to inspect the electromagnetic interactions in an electrically neutral plasma, with an equal number of negative and positive charge carriers. We argue that the static equilibrium configurations within the plasma are topologically stable solitons, that describe knotted and linked fluxtubes of helical magnetic fields.Comment: 9 pages 1 ps-figur

    Spin-Charge Separation and the Pauli Electron

    Get PDF
    The separation between the spin and the charge converts the quantum mechanical Pauli Hamiltonian into the Hamiltonian of the non-Abelian Georgi-Glashow model, notorious for its magnetic monopoles and confinement. The independent spin and charge fluctuations both lead to the Faddeev model, suggesting the existence of a deep duality structure and indicating that the fundamental carriers of spin and charge are knotted solitons.Comment: 7 pages; v2: new results added, references update

    Partially Dual variables in SU(2) Yang-Mills Theory

    Get PDF
    We propose a reformulation of SU(2) Yang-Mills theory in terms of new variables. These variables are appropriate for describing the theory in its infrared limit, and indicate that it admits knotlike configurations as stable solitons. As a consequence we arrive at a dual picture of the Yang-Mills theory where the short distance limit describes asymptotically free, massless point gluons and the large distance limit describes extended, massive knotlike solitons.Comment: 4 pages, revtex twocolum

    Hirota equation as an example of integrable symplectic map

    Get PDF
    The hamiltonian formalism is developed for the sine-Gordon model on the space-time light-like lattice, first introduced by Hirota. The evolution operator is explicitely constructed in the quantum variant of the model, the integrability of the corresponding classical finite-dimensional system is established.Comment: 10 pages, LaTe
    • 

    corecore