22,713 research outputs found
Conformal Gravity with Electrodynamics for Fermion Fields and their Symmetry Breaking Mechanism
In this paper we consider an axial torsion to build metric-compatible
connections in conformal gravity, with gauge potentials; the geometric
background is filled with Dirac spinors: scalar fields with suitable potentials
are added eventually. The system of field equations is worked out to have
torsional effects converted into spinorial self-interactions: the massless
spinors display self-interactions of a specific form that gives them the
features they have in the non-conformal theory but with the additional
character of renormalizability, and the mechanisms of generation of mass and
cosmological constants become dynamical. As a final step we will address the
cosmological constant and coincidence problems.Comment: 13 page
Multi-band spectroscopy of inhomogeneous Mott-insulator states of ultracold bosons
In this work, we use inelastic scattering of light to study the response of
inhomogeneous Mott-insulator gases to external excitations. The experimental
setup and procedure to probe the atomic Mott states are presented in detail. We
discuss the link between the energy absorbed by the gases and accessible
experimental parameters as well as the linearity of the response to the
scattering of light. We investigate the excitations of the system in multiple
energy bands and a band-mapping technique allows us to identify band and
momentum of the excited atoms. In addition the momentum distribution in the
Mott states which is spread over the entire first Brillouin zone enables us to
reconstruct the dispersion relation in the high energy bands using a single
Bragg excitation with a fixed momentum transfer.Comment: 19 pages, 7 figure
Spontaneous breaking of conformal invariance in theories of conformally coupled matter and Weyl gravity
We study the theory of Weyl conformal gravity with matter degrees of freedom
in a conformally invariant interaction. Specifically, we consider a triplet of
scalar fields and SO(3) non-abelian gauge fields, i.e. the Georgi-Glashow model
conformally coupled to Weyl gravity. We show that the equations of motion admit
solutions spontaneously breaking the conformal symmetry and the gauge symmetry,
providing a mechanism for supplying a scale in the theory. The vacuum solution
corresponds to anti-de-Sitter space-time, while localized soliton solutions
correspond to magnetic monopoles in asymptotically anti-de-Sitter space-time.
The resulting effective action gives rise to Einstein gravity and the residual
U(1) gauge theory. This mechanism strengthens the reasons for considering
conformally invariant matter-gravity theory, which has shown promising
indications concerning the problem of missing matter in galactic rotation
curves.Comment: 20 pages, 1 figure, revised and added reference
Momentum-resolved study of an array of 1D strongly phase-fluctuating Bose gases
We investigate the coherence properties of an array of one-dimensional Bose
gases with short-scale phase fluctuations. The momentum distribution is
measured using Bragg spectroscopy and an effective coherence length of the
whole ensemble is defined. In addition, we propose and demonstrate that
time-of-flight absorption imaging can be used as a simple probe to directly
measure the coherence-length of 1D gases in the regime where phase-fluctuations
are strong. This method is suitable for future studies such as investigating
the effect of disorder on the phase coherence.Comment: 4 pages, 4 figure
- …
