30,096 research outputs found
New electromagnetic conservation laws
The Chevreton superenergy tensor was introduced in 1964 as a counterpart, for
electromagnetic fields, of the well-known Bel-Robinson tensor of the
gravitational field. We here prove the unnoticed facts that, in the absence of
electromagnetic currents, Chevreton's tensor (i) is completely symmetric, and
(ii) has a trace-free divergence if Einstein-Maxwell equations hold. It follows
that the trace of the Chevreton tensor is a rank-2, symmetric, trace-free, {\em
conserved} tensor, which is different from the energy-momentum tensor, and
nonetheless can be constructed for any test Maxwell field, or any
Einstein-Maxwell spacetime.Comment: 6 page
Receiver Algorithm based on Differential Signaling for SIMO Phase Noise Channels with Common and Separate Oscillator Configurations
In this paper, a receiver algorithm consisting of differential transmission
and a two-stage detection for a single-input multiple-output (SIMO) phase-noise
channels is studied. Specifically, the phases of the QAM modulated data symbols
are manipulated before transmission in order to make them more immune to the
random rotational effects of phase noise. At the receiver, a two-stage detector
is implemented, which first detects the amplitude of the transmitted symbols
from a nonlinear combination of the received signal amplitudes. Then in the
second stage, the detector performs phase detection. The studied signaling
method does not require transmission of any known symbols that act as pilots.
Furthermore, no phase noise estimator (or a tracker) is needed at the receiver
to compensate the effect of phase noise. This considerably reduces the
complexity of the receiver structure. Moreover, it is observed that the studied
algorithm can be used for the setups where a common local oscillator or
separate independent oscillators drive the radio-frequency circuitries
connected to each antenna. Due to the differential encoding/decoding of the
phase, weighted averaging can be employed at a multi-antenna receiver, allowing
for phase noise suppression to leverage the large number of antennas. Hence, we
observe that the performance improves by increasing the number of antennas,
especially in the separate oscillator case. Further increasing the number of
receive antennas results in a performance error floor, which is a function of
the quality of the oscillator at the transmitter.Comment: IEEE GLOBECOM 201
Capacity of SIMO and MISO Phase-Noise Channels with Common/Separate Oscillators
In multiple antenna systems, phase noise due to instabilities of the
radio-frequency (RF) oscillators, acts differently depending on whether the RF
circuitries connected to each antenna are driven by separate (independent)
local oscillators (SLO) or by a common local oscillator (CLO). In this paper,
we investigate the high-SNR capacity of single-input multiple-output (SIMO) and
multiple-output single-input (MISO) phase-noise channels for both the CLO and
the SLO configurations.
Our results show that the first-order term in the high-SNR capacity expansion
is the same for all scenarios (SIMO/MISO and SLO/CLO), and equal to , where stands for the SNR. On the contrary, the second-order
term, which we refer to as phase-noise number, turns out to be
scenario-dependent. For the SIMO case, the SLO configuration provides a
diversity gain, resulting in a larger phase-noise number than for the CLO
configuration. For the case of Wiener phase noise, a diversity gain of at least
can be achieved, where is the number of receive antennas. For
the MISO, the CLO configuration yields a higher phase-noise number than the SLO
configuration. This is because with the CLO configuration one can obtain a
coherent-combining gain through maximum ratio transmission (a.k.a. conjugate
beamforming). This gain is unattainable with the SLO configuration.Comment: IEEE Transactions on Communication
Effect of Synchronizing Coordinated Base Stations on Phase Noise Estimation
In this paper, we study the problem of oscillator phase noise (PN) estimation
in coordinated multi-point (CoMP) transmission systems. Specifically, we
investigate the effect of phase synchronization between coordinated base
stations (BSs) on PN estimation at the user receiver (downlink channel). In
this respect, the Bayesian Cram\'er-Rao bound for PN estimation is derived
which is a function of the level of phase synchronization between the
coordinated BSs. Results show that quality of BS synchronization has a
significant effect on the PN estimation
Pseudo-digital quantum bits
Quantum computers are analog devices; thus they are highly susceptible to
accumulative errors arising from classical control electronics. Fast
operation--as necessitated by decoherence--makes gating errors very likely. In
most current designs for scalable quantum computers it is not possible to
satisfy both the requirements of low decoherence errors and low gating errors.
Here we introduce a hardware-based technique for pseudo-digital gate operation.
We perform self-consistent simulations of semiconductor quantum dots, finding
that pseudo-digital techniques reduce operational error rates by more than two
orders of magnitude, thus facilitating fast operation.Comment: 4 pages, 3 figure
Magnetic field dependence of valley splitting in realistic Si/SiGe quantum wells
The authors investigate the magnetic field dependence of the energy splitting
between low-lying valley states for electrons in a Si/SiGe quantum well tilted
with respect to the crystallographic axis. The presence of atomic steps at the
quantum well interface may explain the unexpected, strong suppression of the
valley splitting observed in recent experiments. The authors find that the
suppression is caused by an interference effect associated with multiple steps,
and that the magnetic field dependence arises from the lateral confinement of
the electronic wave function. Using numerical simulations, the authors clarify
the role of step disorder, obtaining quantitative agreement with the
experiments.Comment: Published versio
Sample genealogies and genetic variation in populations of variable size
We consider neutral evolution of a large population subject to changes in its
population size. For a population with a time-variable carrying capacity we
have computed the distributions of the total branch lengths of its sample
genealogies. Within the coalescent approximation we have obtained a general
expression, Eq. (27), for the moments of these distributions for an arbitrary
smooth dependence of the population size on time. We investigate how the
frequency of population-size variations alters the distributions. This allows
us to discuss their influence on the distribution of the number of mutations,
and on the population homozygosity in populations with variable size.Comment: 19 pages, 8 figures, 1 tabl
- …
