22 research outputs found

    Fuel Spray Trajectory in Diesel Engines

    No full text

    Atomization Quality of Twin Fluid Atomizers for Gas Turbines

    No full text
    A detailed investigation of the effect of nozzle/needle diameter rati

    Magneto-Hydrodynamic Flow above Exponentially Stretchable Surface with Chemical Reaction

    No full text
    This article is focused on investigating the convective magneto-hydrodynamic single-phase flow for comparative analysis of two different base fluids above an exponentially stretchable porous surface under the effect of the chemical reaction. The Buongiorno fluid model is incorporated to observe the Thermophoresis and Brownian diffusion in this study. Boussinesq approximation for temperature and concentration are accounted for flow to be naturally convective. In this study, water and ethanol are assumed for comparative analysis. Additionally, to achieve the outcomes of the designed three-dimensional flow boundary value, problem technique is employed to simulate the problem in MATLAB. Increase in the magnetic field, thermophoresis diffusion, temperature exponent, and Prandtl number expand thermal boundary, whereas contraction is observed with an increase in porosity. Shear stress rates in respective directions have decreased with an increase in the stretching ratio of the surface. Moreover, through comparison, reasonably enhanced Nusselt number is observed for water under influence of study parameters while the Nusselt number abruptly decreases for ethanol. High mass coefficients are observed for both examined fluids

    Artificial Thermal Quenching and Salt Crystallization Weathering Processes for the Assessment of Long-Term Degradation Characteristics of Some Sedimentary Rocks, Egypt

    No full text
    This research aims at investigating the deterioration of limestone rocks due to the influences of thermal quenching and salt crystallization weathering tests and predicting their long-term durability. Therefore, six types of limestones were quarried from different provinces of Egypt and subjected to 50 cycles of thermal quenching and 25 cycles of salt crystallization weathering processes. The porosity, Schmidt hammer rebound hardness, ultrasound pulse velocity, Brazilian tensile strength, and uniaxial compression strength were determined before and after weathering processes. In addition, the mathematical decay function model was developed to evaluate the degradation rate of samples against weathering processes. Results proved that the cyclic salt crystallization deteriorates the physico-mechanical characteristics of the studied limestone more strongly than the thermal quenching cycles do. The decay constant and half-life indexes obtained here indicate that the degradation rate differs for various limestone specimens under thermal and salt weathering processes. This model also showed that the deterioration rate of the studied rocks was higher during cyclic salt crystallization in comparison with thermal quenching. Therefore, the rock degradation rate and or long-term durability under cyclic thermal and salt processes can be estimated accurately. These results show that the studied limestones can be used as building stones in regions exposed to frequent cyclic thermal and salty weathering conditions for long periods without degradation. However, partial attention should be given to LSG limestone rocks characterized by increased porosity and water absorption characteristics

    Numerical Investigation of Darcy–Forchheimer Hybrid Nanofluid Flow with Energy Transfer over a Spinning Fluctuating Disk under the Influence of Chemical Reaction and Heat Source

    No full text
    The present computational model is built to analyze the energy and mass transition rate through a copper and cobalt ferrite water-based hybrid nanofluid (hnf) flow caused by the fluctuating wavy spinning disk. Cobalt ferrite (CoFe2O4) and copper (Cu) nanoparticles (nps) are incredibly renowned in engineering and technological research due to their vast potential applications in nano/microscale structures, devices, materials, and systems related to micro- and nanotechnology. The flow mechanism has been formulated in the form of a nonlinear set of PDEs. That set of PDEs has been further reduced to the system of ODEs through resemblance replacements and computationally solved through the parametric continuation method. The outcomes are verified with the Matlab program bvp4c, for accuracy purposes. The statistical outputs and graphical evaluation of physical factors versus velocity, energy, and mass outlines are given through tables and figures. The configuration of a circulating disk affects the energy transformation and velocity distribution desirably. In comparison to a uniform interface, the uneven spinning surface augments energy communication by up to 15%. The addition of nanostructured materials (cobalt ferrite and copper) dramatically improves the solvent physiochemical characteristics. Furthermore, the upward and downward oscillation of the rotating disc also enhances the velocity and energy distribution

    Numerical Analysis of an Unsteady, Electroviscous, Ternary Hybrid Nanofluid Flow with Chemical Reaction and Activation Energy across Parallel Plates

    No full text
    Despite the recycling challenges in ionic fluids, they have a significant advantage over traditional solvents. Ionic liquids make it easier to separate the end product and recycle old catalysts, particularly when the reaction media is a two-phase system. In the current analysis, the properties of transient, electroviscous, ternary hybrid nanofluid flow through squeezing parallel infinite plates is reported. The ternary hybrid nanofluid is synthesized by dissolving the titanium dioxide (TiO2), aluminum oxide (Al2O3), and silicon dioxide (SiO2) nanoparticles in the carrier fluid glycol/water. The purpose of the current study is to maximize the energy and mass transfer rate for industrial and engineering applications. The phenomena of fluid flow is studied, with the additional effects of the magnetic field, heat absorption/generation, chemical reaction, and activation energy. The ternary hybrid nanofluid flow is modeled in the form of a system of partial differential equations, which are subsequently simplified to a set of ordinary differential equations through resemblance substitution. The obtained nonlinear set of dimensionless ordinary differential equations is further solved, via the parametric continuation method. For validity purposes, the outcomes are statistically compared to an existing study. The results are physically illustrated through figures and tables. It is noticed that the mass transfer rate accelerates with the rising values of Lewis number, activation energy, and chemical reaction. The velocity and energy transfer rate boost the addition of ternary NPs to the base fluid
    corecore