13 research outputs found

    AT 1

    No full text

    An automated A-value measurement tool for accurate cochlear duct length estimation

    No full text
    Abstract Background There has been renewed interest in the cochlear duct length (CDL) for preoperative cochlear implant electrode selection and postoperative generation of patient-specific frequency maps. The CDL can be estimated by measuring the A-value, which is defined as the length between the round window and the furthest point on the basal turn. Unfortunately, there is significant intra- and inter-observer variability when these measurements are made clinically. The objective of this study was to develop an automated A-value measurement algorithm to improve accuracy and eliminate observer variability. Method Clinical and micro-CT images of 20 cadaveric cochleae specimens were acquired. The micro-CT of one sample was chosen as the atlas, and A-value fiducials were placed onto that image. Image registration (rigid affine and non-rigid B-spline) was applied between the atlas and the 19 remaining clinical CT images. The registration transform was applied to the A-value fiducials, and the A-value was then automatically calculated for each specimen. High resolution micro-CT images of the same 19 specimens were used to measure the gold standard A-values for comparison against the manual and automated methods. Results The registration algorithm had excellent qualitative overlap between the atlas and target images. The automated method eliminated the observer variability and the systematic underestimation by experts. Manual measurement of the A-value on clinical CT had a mean error of 9.5ā€‰Ā±ā€‰4.3% compared to micro-CT, and this improved to an error of 2.7ā€‰Ā±ā€‰2.1% using the automated algorithm. Both the automated and manual methods correlated significantly with the gold standard micro-CT A-values (rā€‰=ā€‰0.70, pā€‰<ā€‰0.01 and rā€‰=ā€‰0.69, pā€‰<ā€‰0.01, respectively). Conclusion An automated A-value measurement tool using atlas-based registration methods was successfully developed and validated. The automated method eliminated the observer variability and improved accuracy as compared to manual measurements by experts. This open-source tool has the potential to benefit cochlear implant recipients in the future

    Carotid Artery Corrected Flow Time Measured by Wearable Doppler Ultrasound Accurately Detects Changing Stroke Volume During the Passive Leg Raise in Ambulatory Volunteers

    No full text
    Background: The change in the corrected flow time of the common carotid artery (ccFTĪ”) has been used as a surrogate of changing stroke volume (SVĪ”) in the critically-ill. Thus, this relatively easy-to-obtain Doppler measure may help clinicians better define the intended effect of intravenous fluids. Yet the temporal evolution of SVĪ” and ccFTĪ” has not been reported in volunteers undergoing a passive leg raise (PLR). Methods: We recruited clinically-euvolemic, non-fasted, adult, volunteers in a local physiology lab to perform 2 PLR maneuvers, each separated by a 5 minute ā€˜wash-outā€™. During each PLR, SV was measured by a non-invasive pulse contour analysis device. SV was temporally-synchronized with a wireless, wearable Doppler ultrasound worn over the common carotid artery that continuously measured ccFT. Results: 36 PLR maneuvers were obtained across 19 ambulatory volunteers. 8856 carotid Doppler cardiac cycles were analyzed. The ccFT increased nearly ubiquitously during the PLR and within 40ā€“60 seconds of PLR onset; the rise in SV from the pulse contour device was more gradual. SVĪ” by +5% and +10% were both detected by a +7% ccFTĪ” with sensitivities, specificities and areas under the receiver operator curve of 59%, 95% and 0.77 (p < 0.001) and 66%, 76% and 0.73 (p < 0.001), respectively. Conclusions: The ccFTĪ” during the PLR in ambulatory volunteers was rapid and sustained. Within the limits of precision for detecting a clinically-significant rise in SV by a non-invasive pulse contour analysis device, simultaneously-acquired ccFT from a wireless, wearable ultrasound system was accurate at detecting ā€˜preload responsivenessā€™

    A Wireless Wearable Doppler Ultrasound Detects Changing Stroke Volume: Proof-of-Principle Comparison with Trans-Esophageal Echocardiography during Coronary Bypass Surgery

    No full text
    Background: A novel, wireless, ultrasound biosensor that adheres to the neck and measures real-time Doppler of the carotid artery may be a useful functional hemodynamic monitor. A unique experimental set-up during elective coronary artery bypass surgery is described as a means to compare the wearable Doppler to trans-esophageal echocardiography (TEE). Methods: A total of two representative patients were studied at baseline and during Trendelenburg position. Carotid Doppler spectra from the wearable ultrasound and TEE were synchronously captured. Areas under the receiver operator curve (AUROC) were performed to assess the accuracy of changing common carotid artery velocity time integral (ccVTI&#8710;) at detecting a clinically significant change in stroke volume (SV&#8710;). Results: Synchronously measuring and comparing Doppler spectra from the wearable ultrasound and TEE is feasible during Trendelenburg positioning. In two representative cardiac surgical patients, the ccVTI&#8710; accurately detected a clinically significant SV&#8710; with AUROCs of 0.89, 0.91, and 0.95 when single-beat, 3-consecutive beat and 10-consecutive beat averages were assessed, respectively. Conclusion: In this proof-of-principle research communication, a wearable Doppler ultrasound system is successfully compared to TEE. Preliminary data suggests that the diagnostic accuracy of carotid Doppler ultrasonography at detecting clinically significant SV&#8710; is enhanced by averaging more cardiac cycles

    A Novel Spectral Index for Tracking Preload Change from a Wireless, Wearable Doppler Ultrasound

    No full text
    A wireless, wearable Doppler ultrasound offers a new paradigm for linking physiology to resuscitation medicine. To this end, the image analysis of simultaneously-acquired venous and arterial Doppler spectrograms attained by wearable ultrasound represents a new source of hemodynamic data. Previous investigators have reported a direct relationship between the central venous pressure (CVP) and the ratio of the internal jugular-to-common carotid artery diameters. Because Doppler power is directly related to the number of red cell scatterers within a vessel, we hypothesized that (1) the ratio of internal jugular-to-carotid artery Doppler power (V/APOWER) would be a surrogate for the ratio of the vascular areas of these two vessels and (2) the V/APOWER would track the anticipated CVP change during simulated hemorrhage and resuscitation. To illustrate this proof-of-principle, we compared the change in V/APOWER obtained via a wireless, wearable Doppler ultrasound to B-mode ultrasound images during a head-down tilt. Additionally, we elucidated the change in the V/APOWER during simulated hemorrhage and transfusion via lower body negative pressure (LBNP) and release. With these Interesting Images, we show that the Doppler V/APOWER ratio qualitatively tracks anticipated changes in CVP (e.g., cardiac preload) which is promising for both diagnosis and management of hemodynamic unrest

    The Correlation between Carotid Artery Corrected Flow Time and Velocity Time Integral during Central Blood Volume Loss and Resuscitation

    No full text
    Background: Doppler ultrasound of the common carotid artery is used to infer central hemodynamics. For example, change in the common carotid artery corrected flow time (ccFT) and velocity time integral (VTI) are proposed surrogates of changing stroke volume. However, conflicting data exist which may be due to inadequate beat sample size and measurement variability ā€“ both intrinsic to handheld systems. In this brief communication, we determined the correlation between changing ccFT and carotid VTI during progressively severe central blood volume loss and resuscitation. Methods: Measurements were obtained through a novel, wireless, wearable Doppler ultrasound system. Sixteen participants (ages of 18ā€“40 years with no previous medical history) were studied across 25 lower body-negative pressure protocols. Relationships were assessed using repeated-measures correlation regression models. Results: In total, 33,110 cardiac cycles comprise this analysis; repeated-measures correlation showed a strong, linear relationship between ccFT and VTI. The strength of the ccFT-VTI relationship was dependent on the number of consecutively averaged cardiac cycles (R1 cycle = 0.70, R2 cycles = 0.74, and R10 cycles = 0.81). Conclusions: These results positively support future clinical investigations employing common carotid artery Doppler as a surrogate for central hemodynamics

    Simultaneous venousā€“arterial Doppler during preload augmentation: illustrating the Doppler Starling curve

    No full text
    Abstract Providing intravenous (IV) fluids to a patient with signs or symptoms of hypoperfusion is common. However, evaluating the IV fluid ā€˜doseā€“responseā€™ curve of the heart is elusive. Two patients were studied in the emergency department with a wireless, wearable Doppler ultrasound system. Change in the common carotid arterial and internal jugular Doppler spectrograms were simultaneously obtained as surrogates of left ventricular stroke volume (SV) and central venous pressure (CVP), respectively. Both patients initially had low CVP jugular venous Doppler spectrograms. With preload augmentation, only one patient had arterial Doppler measures indicative of significant SV augmentation (i.e., ā€˜fluid responsiveā€™). The other patient manifested diminishing arterial response, suggesting depressed SV (i.e., ā€˜fluid unresponsiveā€™) with evidence of ventricular asynchrony. In this short communication, we describe how a wireless, wearable Doppler ultrasound simultaneously tracks surrogates of cardiac preload and output within a ā€˜Doppler Starling curveā€™ framework; implications for IV fluid dosing are discussed
    corecore