3 research outputs found
New cellular tools reveal complex epithelial–mesenchymal interactions in hepatocarcinogenesis
To enable detailed analyses of cell interactions in tumour development, new epithelial and mesenchymal cell lines were established from human hepatocellular carcinoma by spontaneous outgrowth in culture. We obtained several hepatocarcinoma (HCC)-, B-lymphoblastoid (BLC)-, and myofibroblastoid (MF)-lines from seven cases. In-depth characterisation included cell kinetics, genotype, tumourigenicity, expression of cell-type specific markers, and proteome patterns. Many functions of the cells of origin were found to be preserved. We studied the impact of the mesenchymal lines on hepatocarcinogenesis by in vitro assays. BLC- and MF-supernatants strongly increased the DNA replication of premalignant hepatocytes. The stimulation by MF-lines was mainly attributed to HGF secretion. In HCC-cells, MF-supernatant had only minor effects on cell growth but enhanced migration. MF-lines also stimulated neoangiogenesis through vEGF release. BLC-supernatant dramatically induced death of HCC-cells, which could be largely abrogated by preincubating the supernatant with TNFβ-antiserum. Thus, the new cell lines reveal stage-specific stimulatory and inhibitory interactions between mesenchymal and epithelial tumour cells. In conclusion, the new cell lines provide unique tools to analyse essential components of the complex interplay between the microenvironment and the developing liver cancer, and to identify factors affecting proliferation, migration and death of tumour cells, neoangiogenesis, and outgrowth of additional malignancy
SINFONI - Galaxy dynamics at 0.'' 05 resolution with the VLT
The SINFONI integral field spectrometer for the VLT will provide near-infrared spatially resolved spectra at spatial resolutions close to the diffraction limit of the telescope (0." 05 at 2 pm). 1024 spectra can be simultaneously obtained, covering a 32x32 pixel field of view with similar to 100% filling factor. The spectral resolution is R similar to 4500, corresponding to a kinematic resolution of 67 km s(-1). SINFONI is ideally suited to study stellar kinematics in the nuclear regions of normal spiral galaxies, using the near-infrared H and K band CO stellar absorption features. Integral field data from SINFONI will provide high-resolution two-dimensional maps of nuclear velocity dispersion and rotation, which in turn will constrain the anisotropy parameter and yield robust estimates of the central dark mass
Suppression of activin A signals inhibits growth of malignant pleural mesothelioma cells
Background:Activins control the growth of several tumour types including thoracic malignancies. In the present study, we investigated their expression and function in malignant pleural mesothelioma (MPM).Methods:The expression of activins and activin receptors was analysed by quantitative PCR in a panel of MPM cell lines. Activin A expression was further analysed by immunohistochemistry in MPM tissue specimens (N=53). Subsequently, MPM cells were treated with activin A, activin receptor inhibitors or activin-targeting siRNA and the impact on cell viability, proliferation, migration and signalling was assessed.Results:Concomitant expression of activin subunits and receptors was found in all cell lines, and activin A was overexpressed in most cell lines compared with non-malignant mesothelial cells. Similarly, immunohistochemistry demonstrated intense staining of tumour cells for activin A in a subset of patients. Treatment with activin A induced SMAD2 phosphorylation and stimulated clonogenic growth of mesothelioma cells. In contrast, treatment with kinase inhibitors of activin receptors (SB-431542, A-8301) inhibited MPM cell viability, clonogenicity and migration. Silencing of activin A expression by siRNA oligonucleotides further confirmed these results and led to reduced cyclin D1/3 expression.Conclusion:Our study suggests that activin A contributes to the malignant phenotype of MPM cells via regulation of cyclin D and may represent a valuable candidate for therapeutic interference