22,333 research outputs found

    Asymptotic Analysis of the Boltzmann Equation for Dark Matter Relics in the presence of a Running Dilaton and Space-Time Defects

    Full text link
    The interplay of dilatonic effects in dilaton cosmology and stochastic quantum space-time defects within the framework of string/brane cosmologies is examined. The Boltzmann equation describes the physics of thermal dark-matter-relic abundances in the presence of rolling dilatons. These dilatons affect the coupling of stringy matter to D-particle defects, which are generic in string theory. This coupling leads to an additional source term in the Boltzmann equation. The techniques of asymptotic matching and boundary-layer theory, which were recently applied by two of the authors (CMB and SS) to a Boltzmann equation, are used here to find the detailed asymptotic relic abundances for all ranges of the expectation value of the dilaton field. The phenomenological implications for the search of supersymmetric dark matter in current colliders, such as the LHC, are discussed

    Baryonic Resonances from the Interactions of the Baryon Decuplet and Meson Octet

    Get PDF
    We study SS-wave interactions of the baryon decuplet with the octet of pseudoscalar mesons using the lowest order chiral Lagrangian. We find two bound states in the SU(3) limit corresponding to the octet and decuplet representations. These are found to split into eight different trajectories in the complex plane when the SU(3) symmetry is broken gradually. Finally, we are able to provide a reasonable description for a good number of 4-star 3/2{{3/2}}^- resonances listed by the Particle Data Group. In particular, the Ξ(1820)\Xi(1820), the Λ(1520)\Lambda(1520) and the Σ(1670)\Sigma(1670) states are well reproduced. We predict a few other resonances and also evaluate the couplings of the observed resonances to the various channels from the residues at the poles of the scattering matrix from where partial decay widths into different channels can be evaluated.Comment: Contribution to the HADRON05 Conference, Rio de Janeiro, September 200

    Evidence for an inflationary phase transition from the LSS and CMB anisotropy data

    Get PDF
    In the light of the recent Boomerang and Maxima observations of the CMB which show an anomalously low second acoustic peak, we reexamine the prediction by Adams et al (1997) that this would be the consequence of a 'step' in the primordial spectrum induced by a spontaneous symmetry breaking phase transition during primordial inflation. We demonstrate that a deviation from scale-invariance around k0.1hk\sim0.1h~Mpc1^{-1} can simultaneously explain both the feature identified earlier in the APM galaxy power spectrum as well the recent CMB anisotropy data, with a baryon density consistent with the BBN value. Such a break also allows a good fit to the data on cluster abundances even for a critical density matter-dominated universe with zero cosmological constant.Comment: 4 pages with 3 figures, LaTeX file using espcrc2.sty to appear on the Proceedings of "Euroconference on Frontiers in Particle Astrophysics and Cosmology",Sant Feliu de Guixols,Spain,30th September-5th October of 200

    Electrical transport properties of nanostructured ferromagnetic perovskite oxides La_0.67Ca_0.33MnO_3 and La_0.5Sr_0.5CoO_3 at low temperatures (5 K > T >0.3 K) and high magnetic field

    Full text link
    We report a comprehensive study of the electrical and magneto-transport properties of nanocrystals of La_0.67Ca_0.33MnO_3 (LCMO) (with size down to 15 nm) and La_0.5Sr_0.5CoO_3 (LSCO) (with size down to 35 nm) in the temperature range 0.3 K to 5 K and magnetic fields upto 14 T. The transport, magnetotransport and non-linear conduction (I-V curves) were analysed using the concept of Spin Polarized Tunnelling in the presence of Coulomb blockade. The activation energy of transport, \Delta, was used to estimate the tunnelling distances and the inverse decay length of the tunnelling wave function (\chi) and the height of the tunnelling barrier (\Phi_B). The magnetotransport data were used to find out the magnetic field dependences of these tunnelling parameters. The data taken over a large magnetic field range allowed us to separate out the MR contributions at low temperatures arising from tunnelling into two distinct contributions. In LCMO, at low magnetic field, the transport and the MR are dominated by the spin polarization, while at higher magnetic field the MR arises from the lowering of the tunnel barrier by the magnetic field leading to an MR that does not saturate even at 14 T. In contrast, in LSCO, which does not have substantial spin polarization, the first contribution at low field is absent, while the second contribution related to the barrier height persists. The idea of inter-grain tunnelling has been validated by direct measurements of the non-linear I-V data in this temperature range and the I-V data was found to be strongly dependent on magnetic field. We made the important observation that a gap like feature (with magnitude ~ E_C, the Coulomb charging energy) shows up in the conductance g(V) at low bias for the systems with smallest nanocrystal size at lowest temperatures (T < 0.7 K). The gap closes as the magnetic field and the temperature are increased.Comment: 13 figure

    Infinitely many inequivalent field theories from one Lagrangian

    Full text link
    Logarithmic time-like Liouville quantum field theory has a generalized PT invariance, where T is the time-reversal operator and P stands for an S-duality reflection of the Liouville field ϕ\phi. In Euclidean space the Lagrangian of such a theory, L=12(ϕ)2igϕexp(iaϕ)L=\frac{1}{2}(\nabla\phi)^2-ig\phi\exp(ia\phi), is analyzed using the techniques of PT-symmetric quantum theory. It is shown that L defines an infinite number of unitarily inequivalent sectors of the theory labeled by the integer n. In one-dimensional space (quantum mechanics) the energy spectrum is calculated in the semiclassical limit and the mth energy level in the nth sector is given by Em,n(m+1/2)2a2/(16n2)E_{m,n}\sim(m+1/2)^2a^2/(16n^2).Comment: 5 pages, 7 figure

    A Genomic Point Mutation in the Extracellular Domain of the Thyrotropin Receptor in Patients with Graves’ Ophthalmopathy

    Get PDF
    Orbital and pretibial fibroblasts are targets of autoimmune attack in Graves' ophthalmopathy (GO) and pretibial dermopathy (PTD). The fibroblast autoantigen involved in these peripheral manifestations of Graves' disease and the reason for the association of GO and PTD with hyperthyroidism are unknown. RNA encoding the full-length extracellular domain of the TSH receptor has been demonstrated in orbital and dermal fibroblasts from patients with GO and normal subjects, suggesting a possible antigenic link between fibroblasts and thyrocytes. RNA was isolated from cultured orbital, pretibial, and abdominal fibroblasts obtained from patients with severe GO (n = 22) and normal subjects (n = 5). RNA was reverse transcribed, and the resulting cDNA was amplified by the polymerase chain reaction, using primers spanning overlapping regions of the entire extracellular domain of the TSH receptor. Nucleotide sequence analysis showed an A for C substitution in the first position of codon 52 in 2 of the patients, both of whom had GO, PTD, and acropachy. Genomic DNA isolated from the 2 affected patients, and not from an additional 12 normal subjects, revealed the codon 52 mutation by direct sequencing and AciI restriction enzyme digestions. In conclusion, we have demonstrated the presence of a genomic point mutation, leading to a threonine for proline amino acid shift in the predicted peptide, in the extracellular domain of the TSH receptor in two patients with severe GO, PTD, acropachy, and high thyroid-stimulating immunoglobulin levels. RNA encoding this mutant product was demonstrated in the fibroblasts of these patients. We suggest that the TSH receptor may be an important fibroblast autoantigen in GO and PTD, and that this mutant form of the receptor may have unique immunogenic properties
    corecore