904 research outputs found
Jack superpolynomials with negative fractional parameter: clustering properties and super-Virasoro ideals
The Jack polynomials P_\lambda^{(\alpha)} at \alpha=-(k+1)/(r-1) indexed by
certain (k,r,N)-admissible partitions are known to span an ideal I^{(k,r)}_N of
the space of symmetric functions in N variables. The ideal I^{(k,r)}_N is
invariant under the action of certain differential operators which include half
the Virasoro algebra. Moreover, the Jack polynomials in I^{(k,r)}_N admit
clusters of size at most k: they vanish when k+1 of their variables are
identified, and they do not vanish when only k of them are identified. We
generalize most of these properties to superspace using orthogonal
eigenfunctions of the supersymmetric extension of the trigonometric
Calogero-Moser-Sutherland model known as Jack superpolynomials. In particular,
we show that the Jack superpolynomials P_{\Lambda}^{(\alpha)} at
\alpha=-(k+1)/(r-1) indexed by certain (k,r,N)-admissible superpartitions span
an ideal {\mathcal I}^{(k,r)}_N of the space of symmetric polynomials in N
commuting variables and N anticommuting variables. We prove that the ideal
{\mathcal I}^{(k,r)}_N is stable with respect to the action of the
negative-half of the super-Virasoro algebra. In addition, we show that the Jack
superpolynomials in {\mathcal I}^{(k,r)}_N vanish when k+1 of their commuting
variables are equal, and conjecture that they do not vanish when only k of them
are identified. This allows us to conclude that the standard Jack polynomials
with prescribed symmetry should satisfy similar clustering properties. Finally,
we conjecture that the elements of {\mathcal I}^{(k,2)}_N provide a basis for
the subspace of symmetric superpolynomials in N variables that vanish when k+1
commuting variables are set equal to each other.Comment: 36 pages; the main changes in v2 are : 1) in the introduction, we
present exceptions to an often made statement concerning the clustering
property of the ordinary Jack polynomials for (k,r,N)-admissible partitions
(see Footnote 2); 2) Conjecture 14 is substantiated with the extensive
computational evidence presented in the new appendix C; 3) the various tests
supporting Conjecture 16 are reporte
Some properties of angular integrals
We find new representations for Itzykson-Zuber like angular integrals for
arbitrary beta, in particular for the orthogonal group O(n), the unitary group
U(n) and the symplectic group Sp(2n). We rewrite the Haar measure integral, as
a flat Lebesge measure integral, and we deduce some recursion formula on n. The
same methods gives also the Shatashvili's type moments. Finally we prove that,
in agreement with Brezin and Hikami's observation, the angular integrals are
linear combinations of exponentials whose coefficients are polynomials in the
reduced variables (x_i-x_j)(y_i-y_j).Comment: 43 pages, Late
Mapping the complete glycoproteome of virion-derived HIV-1 gp120 provides insights into broadly neutralizing antibody binding
The surface envelope glycoprotein (SU) of Human immunodeficiency virus type 1 (HIV-1), gp120SU plays an essential role in virus binding to target CD4+ T-cells and is a major vaccine target. Gp120 has remarkably high levels of N-linked glycosylation and there is considerable evidence that this “glycan shield” can help protect the virus from antibody-mediated neutralization. In recent years, however, it has become clear that gp120 glycosylation can also be included in the targets of recognition by some of the most potent broadly neutralizing antibodies. Knowing the site-specific glycosylation of gp120 can facilitate the rational design of glycopeptide antigens for HIV vaccine development. While most prior studies have focused on glycan analysis of recombinant forms of gp120, here we report the first systematic glycosylation site analysis of gp120 derived from virions produced by infected T lymphoid cells and show that a single site is exclusively substituted with complex glycans. These results should help guide the design of vaccine immunogens
Non-intersecting squared Bessel paths: critical time and double scaling limit
We consider the double scaling limit for a model of non-intersecting
squared Bessel processes in the confluent case: all paths start at time
at the same positive value , remain positive, and are conditioned to end
at time at . After appropriate rescaling, the paths fill a region in
the --plane as that intersects the hard edge at at a
critical time . In a previous paper (arXiv:0712.1333), the scaling
limits for the positions of the paths at time were shown to be
the usual scaling limits from random matrix theory. Here, we describe the limit
as of the correlation kernel at critical time and in the
double scaling regime. We derive an integral representation for the limit
kernel which bears some connections with the Pearcey kernel. The analysis is
based on the study of a matrix valued Riemann-Hilbert problem by
the Deift-Zhou steepest descent method. The main ingredient is the construction
of a local parametrix at the origin, out of the solutions of a particular
third-order linear differential equation, and its matching with a global
parametrix.Comment: 53 pages, 15 figure
Supersymmetric Many-particle Quantum Systems with Inverse-square Interactions
The development in the study of supersymmetric many-particle quantum systems
with inverse-square interactions is reviewed. The main emphasis is on quantum
systems with dynamical OSp(2|2) supersymmetry. Several results related to
exactly solved supersymmetric rational Calogero model, including shape
invariance, equivalence to a system of free superoscillators and non-uniqueness
in the construction of the Hamiltonian, are presented in some detail. This
review also includes a formulation of pseudo-hermitian supersymmetric quantum
systems with a special emphasis on rational Calogero model. There are quite a
few number of many-particle quantum systems with inverse-square interactions
which are not exactly solved for a complete set of states in spite of the
construction of infinitely many exact eigen functions and eigenvalues. The
Calogero-Marchioro model with dynamical SU(1,1|2) supersymmetry and a quantum
system related to short-range Dyson model belong to this class and certain
aspects of these models are reviewed. Several other related and important
developments are briefly summarized.Comment: LateX, 65 pages, Added Acknowledgment, Discussions and References,
Version to appear in Jouranl of Physics A: Mathematical and Theoretical
(Commissioned Topical Review Article
Noncolliding Squared Bessel Processes
We consider a particle system of the squared Bessel processes with index conditioned never to collide with each other, in which if
the origin is assumed to be reflecting. When the number of particles is finite,
we prove for any fixed initial configuration that this noncolliding diffusion
process is determinantal in the sense that any multitime correlation function
is given by a determinant with a continuous kernel called the correlation
kernel. When the number of particles is infinite, we give sufficient conditions
for initial configurations so that the system is well defined. There the
process with an infinite number of particles is determinantal and the
correlation kernel is expressed using an entire function represented by the
Weierstrass canonical product, whose zeros on the positive part of the real
axis are given by the particle-positions in the initial configuration. From the
class of infinite-particle initial configurations satisfying our conditions, we
report one example in detail, which is a fixed configuration such that every
point of the square of positive zero of the Bessel function is
occupied by one particle. The process starting from this initial configuration
shows a relaxation phenomenon converging to the stationary process, which is
determinantal with the extended Bessel kernel, in the long-term limit.Comment: v3: LaTeX2e, 26 pages, no figure, corrections made for publication in
J. Stat. Phy
Focused very high-energy electron beams as a novel radiotherapy modality for producing high-dose volumetric elements
The increased inertia of very high-energy electrons (VHEEs) due to relativistic effects reduces scattering and enables irradiation of deep-seated tumours. However, entrance and exit doses are high for collimated or diverging beams. Here, we perform a study based on Monte Carlo simulations of focused VHEE beams in a water phantom, showing that dose can be concentrated into a small, well-defined volumetric element, which can be shaped or scanned to treat deep-seated tumours. The dose to surrounding tissue is distributed over a larger volume, which reduces peak surface and exit doses for a single beam by more than one order of magnitude compared with a collimated beam
Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights
We study a model of non-intersecting squared Bessel processes in the
confluent case: all paths start at time at the same positive value , remain positive, and are conditioned to end at time at . In
the limit , after appropriate rescaling, the paths fill out a
region in the -plane that we describe explicitly. In particular, the paths
initially stay away from the hard edge at , but at a certain critical
time the smallest paths hit the hard edge and from then on are stuck to
it. For we obtain the usual scaling limits from random matrix
theory, namely the sine, Airy, and Bessel kernels. A key fact is that the
positions of the paths at any time constitute a multiple orthogonal
polynomial ensemble, corresponding to a system of two modified Bessel-type
weights. As a consequence, there is a matrix valued
Riemann-Hilbert problem characterizing this model, that we analyze in the large
limit using the Deift-Zhou steepest descent method. There are some novel
ingredients in the Riemann-Hilbert analysis that are of independent interest.Comment: 59 pages, 11 figure
Laser-plasma generated very high energy electrons (VHEEs) in radiotherapy
As an alternative modality to conventional radiotherapy, electrons with energies above 50 MeV penetrate deeply into tissue, where the dose can be absorbed within a tumour volume with a relatively small penumbra. We investigate the physical properties of VHEEs and review the state-of-the-art in treatment planning and dosimetry. We discuss the advantages of using a laser wakefeld accelerator (LWFA) and present the characteristic features of the electron bunch produced by the LWFA and compare them with that from a conventional linear accelerator
Two-dimensional superstrings and the supersymmetric matrix model
We present evidence that the supersymmetric matrix model of Marinari and
Parisi represents the world-line theory of N unstable D-particles in type II
superstring theory in two dimensions. This identification suggests that the
matrix model gives a holographic description of superstrings in a
two-dimensional black hole geometry.Comment: 22 pages, 2 figures; v2: corrected eqn 4.6; v3: corrected appendices
and discussion of vacua, added ref
- …