904 research outputs found

    Jack superpolynomials with negative fractional parameter: clustering properties and super-Virasoro ideals

    Full text link
    The Jack polynomials P_\lambda^{(\alpha)} at \alpha=-(k+1)/(r-1) indexed by certain (k,r,N)-admissible partitions are known to span an ideal I^{(k,r)}_N of the space of symmetric functions in N variables. The ideal I^{(k,r)}_N is invariant under the action of certain differential operators which include half the Virasoro algebra. Moreover, the Jack polynomials in I^{(k,r)}_N admit clusters of size at most k: they vanish when k+1 of their variables are identified, and they do not vanish when only k of them are identified. We generalize most of these properties to superspace using orthogonal eigenfunctions of the supersymmetric extension of the trigonometric Calogero-Moser-Sutherland model known as Jack superpolynomials. In particular, we show that the Jack superpolynomials P_{\Lambda}^{(\alpha)} at \alpha=-(k+1)/(r-1) indexed by certain (k,r,N)-admissible superpartitions span an ideal {\mathcal I}^{(k,r)}_N of the space of symmetric polynomials in N commuting variables and N anticommuting variables. We prove that the ideal {\mathcal I}^{(k,r)}_N is stable with respect to the action of the negative-half of the super-Virasoro algebra. In addition, we show that the Jack superpolynomials in {\mathcal I}^{(k,r)}_N vanish when k+1 of their commuting variables are equal, and conjecture that they do not vanish when only k of them are identified. This allows us to conclude that the standard Jack polynomials with prescribed symmetry should satisfy similar clustering properties. Finally, we conjecture that the elements of {\mathcal I}^{(k,2)}_N provide a basis for the subspace of symmetric superpolynomials in N variables that vanish when k+1 commuting variables are set equal to each other.Comment: 36 pages; the main changes in v2 are : 1) in the introduction, we present exceptions to an often made statement concerning the clustering property of the ordinary Jack polynomials for (k,r,N)-admissible partitions (see Footnote 2); 2) Conjecture 14 is substantiated with the extensive computational evidence presented in the new appendix C; 3) the various tests supporting Conjecture 16 are reporte

    Some properties of angular integrals

    Get PDF
    We find new representations for Itzykson-Zuber like angular integrals for arbitrary beta, in particular for the orthogonal group O(n), the unitary group U(n) and the symplectic group Sp(2n). We rewrite the Haar measure integral, as a flat Lebesge measure integral, and we deduce some recursion formula on n. The same methods gives also the Shatashvili's type moments. Finally we prove that, in agreement with Brezin and Hikami's observation, the angular integrals are linear combinations of exponentials whose coefficients are polynomials in the reduced variables (x_i-x_j)(y_i-y_j).Comment: 43 pages, Late

    Mapping the complete glycoproteome of virion-derived HIV-1 gp120 provides insights into broadly neutralizing antibody binding

    Get PDF
    The surface envelope glycoprotein (SU) of Human immunodeficiency virus type 1 (HIV-1), gp120SU plays an essential role in virus binding to target CD4+ T-cells and is a major vaccine target. Gp120 has remarkably high levels of N-linked glycosylation and there is considerable evidence that this “glycan shield” can help protect the virus from antibody-mediated neutralization. In recent years, however, it has become clear that gp120 glycosylation can also be included in the targets of recognition by some of the most potent broadly neutralizing antibodies. Knowing the site-specific glycosylation of gp120 can facilitate the rational design of glycopeptide antigens for HIV vaccine development. While most prior studies have focused on glycan analysis of recombinant forms of gp120, here we report the first systematic glycosylation site analysis of gp120 derived from virions produced by infected T lymphoid cells and show that a single site is exclusively substituted with complex glycans. These results should help guide the design of vaccine immunogens

    Non-intersecting squared Bessel paths: critical time and double scaling limit

    Get PDF
    We consider the double scaling limit for a model of nn non-intersecting squared Bessel processes in the confluent case: all paths start at time t=0t=0 at the same positive value x=ax=a, remain positive, and are conditioned to end at time t=1t=1 at x=0x=0. After appropriate rescaling, the paths fill a region in the txtx--plane as nn\to \infty that intersects the hard edge at x=0x=0 at a critical time t=tt=t^{*}. In a previous paper (arXiv:0712.1333), the scaling limits for the positions of the paths at time ttt\neq t^{*} were shown to be the usual scaling limits from random matrix theory. Here, we describe the limit as nn\to \infty of the correlation kernel at critical time tt^{*} and in the double scaling regime. We derive an integral representation for the limit kernel which bears some connections with the Pearcey kernel. The analysis is based on the study of a 3×33\times 3 matrix valued Riemann-Hilbert problem by the Deift-Zhou steepest descent method. The main ingredient is the construction of a local parametrix at the origin, out of the solutions of a particular third-order linear differential equation, and its matching with a global parametrix.Comment: 53 pages, 15 figure

    Supersymmetric Many-particle Quantum Systems with Inverse-square Interactions

    Full text link
    The development in the study of supersymmetric many-particle quantum systems with inverse-square interactions is reviewed. The main emphasis is on quantum systems with dynamical OSp(2|2) supersymmetry. Several results related to exactly solved supersymmetric rational Calogero model, including shape invariance, equivalence to a system of free superoscillators and non-uniqueness in the construction of the Hamiltonian, are presented in some detail. This review also includes a formulation of pseudo-hermitian supersymmetric quantum systems with a special emphasis on rational Calogero model. There are quite a few number of many-particle quantum systems with inverse-square interactions which are not exactly solved for a complete set of states in spite of the construction of infinitely many exact eigen functions and eigenvalues. The Calogero-Marchioro model with dynamical SU(1,1|2) supersymmetry and a quantum system related to short-range Dyson model belong to this class and certain aspects of these models are reviewed. Several other related and important developments are briefly summarized.Comment: LateX, 65 pages, Added Acknowledgment, Discussions and References, Version to appear in Jouranl of Physics A: Mathematical and Theoretical (Commissioned Topical Review Article

    Noncolliding Squared Bessel Processes

    Full text link
    We consider a particle system of the squared Bessel processes with index ν>1\nu > -1 conditioned never to collide with each other, in which if 1<ν<0-1 < \nu < 0 the origin is assumed to be reflecting. When the number of particles is finite, we prove for any fixed initial configuration that this noncolliding diffusion process is determinantal in the sense that any multitime correlation function is given by a determinant with a continuous kernel called the correlation kernel. When the number of particles is infinite, we give sufficient conditions for initial configurations so that the system is well defined. There the process with an infinite number of particles is determinantal and the correlation kernel is expressed using an entire function represented by the Weierstrass canonical product, whose zeros on the positive part of the real axis are given by the particle-positions in the initial configuration. From the class of infinite-particle initial configurations satisfying our conditions, we report one example in detail, which is a fixed configuration such that every point of the square of positive zero of the Bessel function JνJ_{\nu} is occupied by one particle. The process starting from this initial configuration shows a relaxation phenomenon converging to the stationary process, which is determinantal with the extended Bessel kernel, in the long-term limit.Comment: v3: LaTeX2e, 26 pages, no figure, corrections made for publication in J. Stat. Phy

    Focused very high-energy electron beams as a novel radiotherapy modality for producing high-dose volumetric elements

    Get PDF
    The increased inertia of very high-energy electrons (VHEEs) due to relativistic effects reduces scattering and enables irradiation of deep-seated tumours. However, entrance and exit doses are high for collimated or diverging beams. Here, we perform a study based on Monte Carlo simulations of focused VHEE beams in a water phantom, showing that dose can be concentrated into a small, well-defined volumetric element, which can be shaped or scanned to treat deep-seated tumours. The dose to surrounding tissue is distributed over a larger volume, which reduces peak surface and exit doses for a single beam by more than one order of magnitude compared with a collimated beam

    Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights

    Full text link
    We study a model of nn non-intersecting squared Bessel processes in the confluent case: all paths start at time t=0t = 0 at the same positive value x=ax = a, remain positive, and are conditioned to end at time t=Tt = T at x=0x = 0. In the limit nn \to \infty, after appropriate rescaling, the paths fill out a region in the txtx-plane that we describe explicitly. In particular, the paths initially stay away from the hard edge at x=0x = 0, but at a certain critical time tt^* the smallest paths hit the hard edge and from then on are stuck to it. For ttt \neq t^* we obtain the usual scaling limits from random matrix theory, namely the sine, Airy, and Bessel kernels. A key fact is that the positions of the paths at any time tt constitute a multiple orthogonal polynomial ensemble, corresponding to a system of two modified Bessel-type weights. As a consequence, there is a 3×33 \times 3 matrix valued Riemann-Hilbert problem characterizing this model, that we analyze in the large nn limit using the Deift-Zhou steepest descent method. There are some novel ingredients in the Riemann-Hilbert analysis that are of independent interest.Comment: 59 pages, 11 figure

    Laser-plasma generated very high energy electrons (VHEEs) in radiotherapy

    Get PDF
    As an alternative modality to conventional radiotherapy, electrons with energies above 50 MeV penetrate deeply into tissue, where the dose can be absorbed within a tumour volume with a relatively small penumbra. We investigate the physical properties of VHEEs and review the state-of-the-art in treatment planning and dosimetry. We discuss the advantages of using a laser wakefeld accelerator (LWFA) and present the characteristic features of the electron bunch produced by the LWFA and compare them with that from a conventional linear accelerator

    Two-dimensional superstrings and the supersymmetric matrix model

    Full text link
    We present evidence that the supersymmetric matrix model of Marinari and Parisi represents the world-line theory of N unstable D-particles in type II superstring theory in two dimensions. This identification suggests that the matrix model gives a holographic description of superstrings in a two-dimensional black hole geometry.Comment: 22 pages, 2 figures; v2: corrected eqn 4.6; v3: corrected appendices and discussion of vacua, added ref
    corecore