42 research outputs found

    Substrate bias effects during R-F sputtering of Y-Ba-Cu-O films

    No full text

    Stability and microstructure of indium tin oxynitride thin films

    No full text
    Indium oxide (In 2O 3) and indium tin oxide (ITO) thin films have been investigated for high temperature thermocouple and strain guage applications. Reactive sputtering in nitrogen-rich plasmas was used to improve the high temperature stability of indium oxide-based films in air and scanning electron microscopy was used to follow the microstructural changes in the nitrogen-processed films. When thermally cycled at temperatures above 800°C, a partially sintered microstructure comprised of nanometer-sized crystallites was revealed. A densified layer was also formed on the surface, which acted as an oxygen-diffusion barrier in the bulk film. This combined with a network of partially sintered oxynitride crystallites lead to considerable open porosity and a stabilizing effect on the ensuing electrical properties. In this article, the thermoelectric properties of nitrogen-processed films were evaluated at temperatures up to 1400°C. To study the effect of nitrogen plasma processing on the sintering kinetics and associated densification, the constrained sintering of the resulting films was followed as a function of time and temperature. Based on the measured thermoelectric properties of the nitrogen processed films, drift rates on the same order of magnitude as commercial type K wire thermocouples were realized for these all-ceramic thermocouples. © 2011 The American Ceramic Society

    Legacy of land use in Southern Appalachian forests: effects on terrestrial salamander abundance along edges and within abandoned logging roads

    No full text
    Roads may be one of the most common disturbances in otherwise continuous forested habitat in the southern Appalachian Mountains. Despite their obvious presence on the landscape, there is limited data on the ecological effects along a road edge or the size of the “road-effect zone.” We sampled salamanders at current and abandoned road sites within the Nantahala National Forest, North Carolina (U.S.A.) to determine the road-effect zone for an assemblage of woodland salamanders. Salamander abundance near the road was reduced significantly, and salamanders along the edges were predominantly large individuals. These results indicate that the road-effect zone for these salamanders extended 35 m on either side of the relatively narrow, low-use forest roads along which we sampled. Furthermore, salamander abundance was significantly lower on old, abandoned logging roads compared with the adjacent upslope sites. These results indicate that forest roads and abandoned logging roads have negative effects on forest-dependent species such as plethodontid salamanders. Our results may apply to other protected forests in the southern Appalachians and may exemplify a problem created by current and past land use activities in all forested regions, especially those related to road building for natural-resource extraction. Our results show that the effect of roads reached well beyond their boundary and that abandonment or the decommissioning of roads did not reverse detrimental ecological effects; rather, our results indicate that management decisions have significant repercussions for generations to come. Furthermore, the quantity of suitable forested habitat in the protected areas we studied was significantly reduced: between 28.6% and 36.9% of the area was affected by roads. Management and policy decisions must use current and historical data on land use to understand cumulative impacts on forest-dependent species and to fully protect biodiversity on national lands. Note: Link is to the article in a subscription database available to users affiliated with Butler University. Appropriate login information will be required for access. Users not affiliated with Butler University should contact their local librarian for assistance in locating a copy of this article
    corecore