907 research outputs found

    Optimal Taylor-Couette flow: direct numerical simulations

    Get PDF
    We numerically simulate turbulent Taylor-Couette flow for independently rotating inner and outer cylinders, focusing on the analogy with turbulent Rayleigh-B\'enard flow. Reynolds numbers of Rei=8103Re_i=8\cdot10^3 and Reo=±4103Re_o=\pm4\cdot10^3 of the inner and outer cylinders, respectively, are reached, corresponding to Taylor numbers Ta up to 10810^8. Effective scaling laws for the torque and other system responses are found. Recent experiments with the Twente turbulent Taylor-Couette (T3CT^3C) setup and with a similar facility in Maryland at very high Reynolds numbers have revealed an optimum transport at a certain non-zero rotation rate ratio a=ωo/ωia = -\omega_o / \omega_i of about aopt=0.330.35a_{opt}=0.33-0.35. For large enough TaTa in the numerically accessible range we also find such an optimum transport at non-zero counter-rotation. The position of this maximum is found to shift with the driving, reaching a maximum of aopt=0.15a_{opt}=0.15 for Ta=2.5107Ta=2.5\cdot10^7. An explanation for this shift is elucidated, consistent with the experimental result that aopta_{opt} becomes approximately independent of the driving strength for large enough Reynolds numbers. We furthermore numerically calculate the angular velocity profiles and visualize the different flow structures for the various regimes. By writing the equations in a frame co-rotating with the outer cylinder a link is found between the local angular velocity profiles and the global transport quantities.Comment: Under consideration for publication in JFM, 31 pages, 25 figure

    Linear stability, transient energy growth and the role of viscosity stratification in compressible plane Couette flow

    Full text link
    Linear stability and the non-modal transient energy growth in compressible plane Couette flow are investigated for two prototype mean flows: (a) the {\it uniform shear} flow with constant viscosity, and (b) the {\it non-uniform shear} flow with {\it stratified} viscosity. Both mean flows are linearly unstable for a range of supersonic Mach numbers (MM). For a given MM, the critical Reynolds number (ReRe) is significantly smaller for the uniform shear flow than its non-uniform shear counterpart. An analysis of perturbation energy reveals that the instability is primarily caused by an excess transfer of energy from mean-flow to perturbations. It is shown that the energy-transfer from mean-flow occurs close to the moving top-wall for ``mode I'' instability, whereas it occurs in the bulk of the flow domain for ``mode II''. For the non-modal analysis, it is shown that the maximum amplification of perturbation energy, GmaxG_{\max}, is significantly larger for the uniform shear case compared to its non-uniform counterpart. For α=0\alpha=0, the linear stability operator can be partitioned into LLˉ+Re2Lp{\cal L}\sim \bar{\cal L} + Re^2{\cal L}_p, and the ReRe-dependent operator Lp{\cal L}_p is shown to have a negligibly small contribution to perturbation energy which is responsible for the validity of the well-known quadratic-scaling law in uniform shear flow: G(t/Re)Re2G(t/{\it Re}) \sim {\it Re}^2. A reduced inviscid model has been shown to capture all salient features of transient energy growth of full viscous problem. For both modal and non-modal instability, it is shown that the {\it viscosity-stratification} of the underlying mean flow would lead to a delayed transition in compressible Couette flow

    Ultra-discrete Optimal Velocity Model: a Cellular-Automaton Model for Traffic Flow and Linear Instability of High-Flux Traffic

    Full text link
    In this paper, we propose the ultra-discrete optimal velocity model, a cellular-automaton model for traffic flow, by applying the ultra-discrete method for the optimal velocity model. The optimal velocity model, defined by a differential equation, is one of the most important models; in particular, it successfully reproduces the instability of high-flux traffic. It is often pointed out that there is a close relation between the optimal velocity model and the mKdV equation, a soliton equation. Meanwhile, the ultra-discrete method enables one to reduce soliton equations to cellular automata which inherit the solitonic nature, such as an infinite number of conservation laws, and soliton solutions. We find that the theory of soliton equations is available for generic differential equations, and the simulation results reveal that the model obtained reproduces both absolutely unstable and convectively unstable flows as well as the optimal velocity model.Comment: 9 pages, 6 figure

    Dynamics and stability of vortex-antivortex fronts in type II superconductors

    Get PDF
    The dynamics of vortices in type II superconductors exhibit a variety of patterns whose origin is poorly understood. This is partly due to the nonlinearity of the vortex mobility which gives rise to singular behavior in the vortex densities. Such singular behavior complicates the application of standard linear stability analysis. In this paper, as a first step towards dealing with these dynamical phenomena, we analyze the dynamical stability of a front between vortices and antivortices. In particular we focus on the question of whether an instability of the vortex front can occur in the absence of a coupling to the temperature. Borrowing ideas developed for singular bacterial growth fronts, we perform an explicit linear stability analysis which shows that, for sufficiently large front velocities and in the absence of coupling to the temperature, such vortex fronts are stable even in the presence of in-plane anisotropy. This result differs from previous conclusions drawn on the basis of approximate calculations for stationary fronts. As our method extends to more complicated models, which could include coupling to the temperature or to other fields, it provides the basis for a more systematic stability analysis of nonlinear vortex front dynamics.Comment: 13 pages, 8 figure

    The period of a classical oscillator

    Full text link
    We develop a simple method to obtain approximate analytical expressions for the period of a particle moving in a given potential. The method is inspired to the Linear Delta Expansion (LDE) and it is applied to a large class of potentials. Precise formulas for the period are obtained.Comment: 5 pages, 4 figure

    Solitons in a trapped spin-1 atomic condensate

    Full text link
    We numerically investigate a particular type of spin solitons inside a trapped atomic spin-1 Bose-Einstein condensate (BEC) with ferromagnetic interactions. Within the mean field theory approximation, our study of the solitonic dynamics shows that the solitonic wave function, its center of mass motion, and the local spin evolutions are stable and are intimately related to the domain structures studied recently in spin-1 87^{87}Rb condensates. We discuss a rotating reference frame wherein the dynamics of the solitonic local spatial spin distribution become time independent.Comment: 8 pages, 8 color eps figure

    The Universal Gaussian in Soliton Tails

    Full text link
    We show that in a large class of equations, solitons formed from generic initial conditions do not have infinitely long exponential tails, but are truncated by a region of Gaussian decay. This phenomenon makes it possible to treat solitons as localized, individual objects. For the case of the KdV equation, we show how the Gaussian decay emerges in the inverse scattering formalism.Comment: 4 pages, 2 figures, revtex with eps

    Von Neumann Regular Cellular Automata

    Full text link
    For any group GG and any set AA, a cellular automaton (CA) is a transformation of the configuration space AGA^G defined via a finite memory set and a local function. Let CA(G;A)\text{CA}(G;A) be the monoid of all CA over AGA^G. In this paper, we investigate a generalisation of the inverse of a CA from the semigroup-theoretic perspective. An element τCA(G;A)\tau \in \text{CA}(G;A) is von Neumann regular (or simply regular) if there exists σCA(G;A)\sigma \in \text{CA}(G;A) such that τστ=τ\tau \circ \sigma \circ \tau = \tau and στσ=σ\sigma \circ \tau \circ \sigma = \sigma, where \circ is the composition of functions. Such an element σ\sigma is called a generalised inverse of τ\tau. The monoid CA(G;A)\text{CA}(G;A) itself is regular if all its elements are regular. We establish that CA(G;A)\text{CA}(G;A) is regular if and only if G=1\vert G \vert = 1 or A=1\vert A \vert = 1, and we characterise all regular elements in CA(G;A)\text{CA}(G;A) when GG and AA are both finite. Furthermore, we study regular linear CA when A=VA= V is a vector space over a field F\mathbb{F}; in particular, we show that every regular linear CA is invertible when GG is torsion-free elementary amenable (e.g. when G=Zd, dNG=\mathbb{Z}^d, \ d \in \mathbb{N}) and V=FV=\mathbb{F}, and that every linear CA is regular when VV is finite-dimensional and GG is locally finite with Char(F)o(g)\text{Char}(\mathbb{F}) \nmid o(g) for all gGg \in G.Comment: 10 pages. Theorem 5 corrected from previous versions, in A. Dennunzio, E. Formenti, L. Manzoni, A.E. Porreca (Eds.): Cellular Automata and Discrete Complex Systems, AUTOMATA 2017, LNCS 10248, pp. 44-55, Springer, 201

    Solitary Wave Interactions In Dispersive Equations Using Manton's Approach

    Get PDF
    We generalize the approach first proposed by Manton [Nuc. Phys. B {\bf 150}, 397 (1979)] to compute solitary wave interactions in translationally invariant, dispersive equations that support such localized solutions. The approach is illustrated using as examples solitons in the Korteweg-de Vries equation, standing waves in the nonlinear Schr{\"o}dinger equation and kinks as well as breathers of the sine-Gordon equation.Comment: 5 pages, 4 figures, slightly modified version to appear in Phys. Rev.
    corecore