439 research outputs found
The water mites (Acari: Hydrachnidia) of the standing waters of Corsica, Sardinia and Sicily: review and new data
A compilation of our present knowledge of the water mites (Acari: Hydrachnidia) adapted to life in standing waters on the
three large islands in the western Mediterranean (Corsica, Sardinia and Sicily) is provided. In addition to published data,
this study deals with a rich volume of new material from recent field work, mostly deriving from intermittent ponds and
pools, an extremely poorly investigated yet peculiar habitat type in the Mediterranean area. Species richness of water mites
reported for the standing waters of the three islands amounts to 91 species. Out of the 47 species for which we present new
distributional data, Hydrachna incisa Halbert, 1903, Hydrachna leegei Koenike, 1895, Piersigia limophila Protz, 1896,
Hydryphantes crassipalpis Koenike, 1914 and Piona laminata (Thor, 1900) have not been recorded previously from the
Mediterranean area. Most of these species were believed to have typical North European distributions. In addition to these,
a further 13 species are recorded for the first time from the area covered. In total, 11 species are new for Italy, seven more are
new for Sicily, three for Sardinia and seven for Corsica. Redescriptions are given of Axonopsis complanata (Müller, 1776)
(A. graeca, nov. syn), Brachypoda baderi (reported for the first time after the original description from Abruzzo, Italy,
synonymization with B. mutila rejected) and B. mutila (recorded for the first time outside Algeria with certainty). For each
species, information is given on habitat preference and geographical distribution; the significance of the data is discussed
under perspectives of zoogeography and nature protection. The completeness of our knowledge for the three investigated
island is assessed using rarefaction curves and non-parametric estimators of species richness; while Sicily can be considered
fairly well known, Corsica and Sardinia require further sampling to assess their water mite diversity
Nitrogen Experiments on a Supersonic Linear Cascade For ORC Applications
A novel experiment has been conceived at Politecnico di Milano for the study of the flow within and downstream of supersonic cascades of Organic Rankine Cycle (ORC) turbines. This paper documents the first phase of the research, focused on the preliminary tests and studies performed by operating the facility with nitrogen as working fluid, to demonstrate the technical relevance of the experiment and the validity of the measurement system in a simplified thermodynamic condition. The set of measured data includes, beside the inlet total thermodynamic state, eight static pressure values obtained via taps manufactured on the test section rear end-wall, both within the bladed and semi-bladed region of the cascade, as well as a total pressure probe to retrieve the cascade performance. A double-passage Schlieren equipment was also employed to visualize the density gradients. Experiments show an outstanding repeatability, indicate a quasi -steady cascade operation during the blow-down process for all the pressure signal considered, and demonstrate a remarkable periodicity among two consecutive channels also in off-design conditions. Experimental data were also compared with CFD simulations, resulting in an excellent agreement for the pressure data acquired both within and downstream of the cascade
The 4 K outer cryostat for the CUORE experiment: construction and quality control
The external shell of the CUORE cryostat is a large cryogen-free system
designed to host the dilution refrigerator and the bolometers of the CUORE
experiment in a low radioactivity environment. The three vessels that form the
outer shell were produced and delivered to the Gran Sasso underground
Laboratories in July 2012. In this paper, we describe the production techniques
and the validation tests done at the production site in 2012.Comment: 11 pages, 13 figures; to appear in NIM
Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes
Natural Environment Research Council. Grant Number: NE/D013305/
Experimental Observation of Non-Ideal Nozzle Flow of Siloxane Vapor MDM
The first experimental results from the Test-Rig for Organic Vapors (TROVA) at Politecnico di Milano are reported. The facility implements an Organic Rankine Cycle (ORC) where the expansion process takes place within a straight axis convergent-divergent nozzle, which is the simplest geometry representative of an ORC turbine blade passage. In order to reduce the required input thermal power, a batch operating mode was selected for the plant. Experimental runs with air allowed to verify the throttling valve operation and the measurement techniques, which include total pressure and temperature measurements in the settling chamber, static pressure measurements along the nozzle axis. A double-passage Schlieren technique is used to visualize the flow field in the nozzle throat and divergent section and to determine the position of shock waves within the flow field. The first experimental observation of non-ideal nozzle flows are presented for the expansion of siloxane fluid MDM (C8H24O2Si3, octamethyltrisiloxane) for vapor expansion in the close proximity of the liquid-vapor saturation curve, at relatively low pressure of operation. A supersonic flow is attained within the divergent section of the nozzle, as demonstrated by the observation of an oblique shock wave at the throat section, where a 0.1 mm recessed step is located. Schlieren visualizations are limited by the occurrence of condensation along the mirror side of the nozzle. Pressure measurements are compatible with the observed flow field
Clinically-based determination of safe DNAemia cutoff levels for preemptive therapy or human cytomegalovirus infections in solid organ and hematopoietic stem cell transplant recipients
Transplantation Centers using human cytomegalovirus (HCMV) antigenemia-based preemptive therapy will need to replace in the near future the antigenemia assay with a more standardized and automatable assay, such as a molecular assay quantifying HCMV DNA in blood (DNAemia). Thus, in view of replacing antigenemia with clinically safe cutoff values, DNAemia levels corresponding to antigenemia cutoffs guiding HCMV preemptive therapy were determined retrospectively in solid organ and hematopoietic stem cell transplant recipients (HSCTR) using an "in-house" quantitative PCR (QPCR) method. Since preemptive therapy had prevented appearance of HCMV disease in all patients tested, DNA cutoffs determined retrospectively had to be considered as safe clinically as antigenemia cutoffs used prospectively. However, in solid organ transplant recipients (SOTR), initiating preemptive therapy upon an antigenemia cutoff of 100 pp65-positive leukocytes, a DNAemia cutoff of 300,000 copies/ml blood had positive and negative predictive values of >90%, indicating that a DNAemia cutoff could achieve, in terms of prevention of HCMV disease, the same clinical results as the antigenemia cutoff. In HSCTR, initiating preemptive therapy upon first antigenemia positivity, a DNAemia cutoff of 10,000 copies/ml blood had a positive predictive value of >90%, indicating that the great majority of patients treated under the antigenemia guidance would have been treated also using this DNA cutoff. On the other hand, the negative predictive value of 28.6% indicated that two out of three HSCTR had been treated under the antigenemia guidance having the same levels of viral DNA as the untreated patients. The data suggest that a quantitative cutoff could be adopted as a guiding criterion for preemptive therapy also in HSCTR. Regression analysis allowed to determine the DNAemia (corresponding to QPCR) cutoff values for two commercial assays tested both in solid organ and HSCTR. Retrospective DNAemia cutoff values will be verified for safety in prospective trial
Characterization of defatted products obtained from the Parmigiano–Reggiano manufacturing chain: Determination of peptides and amino acids content and study of the digestibility and bioactive properties
Parmigiano–Reggiano (PR) is a worldwide known Italian, long ripened, hard cheese. Its inclusion in the list of cheeses bearing the protected designation of origin (PDO, EU regulation 510/2006) poses restrictions to its geographic area of production and its technological characteristics. To innovate the Parmigiano–Reggiano (PR) cheese manufacturing chain from the health and nutritional point of view, the output of defatted PR is addressed. Two defatting procedures (Soxhlet, and supercritical CO2 extraction) were tested, and the obtained products were compared in the composition of their nitrogen fraction, responsible for their nutritional, organoleptic, and bioactive functions. Free amino acids were quantified, and other nitrogen compounds (peptides, proteins, and non-proteolytic aminoacyl derivatives) were identified in the extracts and the mixtures obtained after simulated gastrointestinal digestion. Moreover, antioxidant and angiotensin converting enzyme (ACE) inhibition capacities of the digests were tested. Results obtained from the molecular and biofunctional characterization of the nitrogen fraction, show that both the defatted products keep the same nutritional properties of the whole cheese
Experimental observation of non-ideal expanding flows of Siloxane MDM vapor for ORC applications
Abstract Extensive experimental results characterizing the supersonic expansion of an organic vapor in non-ideal conditions are reported in this paper for the first time. The collected data also allowed the assessment of the accuracy of Computational Fluid Dynamic (CFD) tools employed to predict the non-ideal behavior of such flows, including the consistency of thermodynamic models adopted. The investigation has been carried out on the converging-diverging nozzle test section of the Test Rig for Organic VApors (TROVA), at the Laboratory of Compressible fluid-dynamics for Renewable Energy Application (CREA) of Politecnico di Milano. Supersonic nozzle flow was chosen as the simplest one of significance for organic Rankine cycle (ORC) turbine channels. The working fluid under scrutiny is Siloxane MDM, a widely employed compound for high temperature ORCs. MDM vapor expands through the TROVA nozzle at moderate non-ideal conditions in the close proximity of the vapor saturation curve. This is the region where ORC expanders typically operate, thus proving the relevance of the investigation for the ORC community. Indeed, detailed experimental data representative of typical ORC expansions were lacking in the open literature up to date. Two different nozzle geometries, featuring exit Mach number of 2.0 and 1.5 respectively, were tested, exploring a wide range of thermodynamic inlet conditions and diverse levels of non-ideality, from moderate non-ideal state, indicated by a compressibility factor Z = Pv/RT ≃ 0.80, to dilute gas conditions, Z ≥ 0.97. Maximum operating total pressure and temperature are Pt ≃ 5 bar and T T ≃ 250 °C. The nozzle flow is characterized in terms of total pressure, total temperature, static pressure at discrete locations along the nozzle axis, and schlieren imaging. In contrast to the well known case of polytropic ideal gas, the vapor expansion through the nozzle is found to be dependent on the inlet conditions, thus proving the non-ideal character of the flow. This influence is found to be consistent with the one predicted by the quasi-1D theory coupled with simple non-ideal gas models. Experimental data at the nozzle centerline are compared with those resulting from a two-dimensional viscous CFD calculation carried out using the SU2 software suite and the improved Peng Robinson Stryjek Vera (iPRSV) thermodynamic model. A very good accordance is found, demonstrating the high accuracy of the applied tools
Mitochondrial dysfunction in Parkinsonian mesenchymal stem cells impairs differentiation
Sporadic cases account for 90-95% of all patients with Parkinson's Disease (PD). Atypical Parkinsonism comprises approximately 20% of all patients with parkinsonism. Progressive Supranuclear Palsy (PSP) belongs to the atypical parkinsonian diseases and is histopathologically classified as a tauopathy. Here, we report that mesenchymal stem cells (MSCs) derived from the bone marrow of patients with PSP exhibit mitochondrial dysfunction in the form of decreased membrane potential and inhibited NADH-dependent respiration. Furthermore, mitochondrial dysfunction in PSP-MSCs led to a significant increase in mitochondrial ROS generation and oxidative stress, which resulted in decrease of major cellular antioxidant GSH. Additionally, higher basal rate of mitochondrial degradation and lower levels of biogenesis were found in PSP-MSCs, together leading to a reduction in mitochondrial mass. This phenotype was biologically relevant to MSC stemness properties, as it heavily impaired their differentiation into adipocytes, which mostly rely on mitochondrial metabolism for their bioenergetic demand. The defect in adipogenic differentiation was detected as a significant impairment of intracellular lipid droplet formation in PSP-MSCs. This result was corroborated at the transcriptional level by a significant reduction of PPARγ and FABP4 expression, two key genes involved in the adipogenic molecular network. Our findings in PSP-MSCs provide new insights into the etiology of 'idiopathic' parkinsonism, and confirm that mitochondrial dysfunction is important to the development of parkinsonism, independent of the type of the cell
- …