701 research outputs found

    Brushless permanent magnet DC and AC motor and synchonous reluctance motor design for racing motorcycles

    Full text link
    There is an increasing interest in electric transportation. Most large manufacturers now produce hybrid versions of their popular models and in some countries electric cycles and scooter are now popular. Motor sport is often used to develop technology and in this paper designs for electric racing motorcycles are addressed. These are in-frame motors (rather than hub motors which can affect handling and are not as powerful). Typically 10 to 12 kW-hours of batteries can be carried on the cycle and the batteries are almost exhausted at the end of a race. Therefore very high efficiency over a range of operation is needed, but also the motors need to be compact and have high torque density. This paper examines the use of permanent magnet motors and possible designs. © 2013 IEEE

    A study of the engineering calculations for iron losses in 3-phase AC motor models

    Full text link
    This paper presents a study of the practical issues that need to be addressed by the engineering approaches to the incorporation of iron loss calculations into analytical and numerical models of AC motors. The total iron loss is estimated by summing up different loss components according to the analysed engineering approach. Illustrative examples are used and these are a 3-phase interior permanent magnet (IPM) motor and a 3-phase induction motor. All the models presented are compared with the no-load and loaded conditions test data. ©2007 IEEE

    The investigation of a segment multi-chamber oscillating water column in physical scale model

    Full text link
    © 2016 IEEE. Wave Energy Converters (WECs) are being developed as a viable green energy solution to meet power needs for coastal communities. This paper presents the initial work on a fixed multi-chamber OWC (MCOWC) concept. The paper reports theoretical and experimental modeling. It begins with initial tests to verify the simple idealized model of a fixed OWC multi-chamber concept. These take place under small-amplitude regular-wave wave tank conditions. The analysis is carried through to assess the effect of the Capture Width (Hydrodynamic efficiency). Experimental data is put forward from the mounting of level sensors and anemometers to test the hydrodynamic performance of a fixed MCOWC at different wave periods. The orifice effects of the chamber on the relative amplitudes of the inner free water surface and air flow rate in the duct are investigated. The experimental results will be used as real case data in order to optimize the orifice area and to maximize the chamber power according to the air flow velocity above the water surface inside the chambers

    Circulation of hydraulically ponded turbidity currents and the filling of continental slope minibasins

    Get PDF
    Natural depressions on continental margins termed minibasins trap turbidity currents, a class of sediment-laden seafloor density driven flow. These currents are the primary downslope vectors for clastic sediment, particulate organic carbon, and microplastics. Here, we establish a method that facilitates long-distance self-suspension of dilute sediment-laden flows, enabling study of turbidity currents with appropriately scaled natural topography. We show that flow dynamics in three-dimensional minibasins are dominated by circulation cell structures. While fluid rotation is mainly along a horizontal plane, inwards spiraling flow results in strong upwelling jets that reduce the ability of minibasins to trap particulate organic carbon, microplastics, and fine-grained clastic sediment. Circulation cells are the prime mechanism for distributing particulates in minibasins and set the geometry of deposits, which are often intricate and below the resolution of geophysical surveys. Fluid and sediment are delivered to circulation cells by turbidity currents that runup the distal wall of minibasins. The magnitude of runup increases with the discharge rate of currents entering minibasins, which influences the amount of sediment that is either trapped in minibasins or spills to downslope environs and determines the height that deposits onlap against minibasin walls

    Virtual Flux Droop Method – A New Control Strategy of Inverters in Microgrids

    Get PDF

    Investigation of Grid-Connected and Islanded Direct Matrix Converter for Renewable Microgrid Applications with Model Predictive Control

    Full text link
    © 2018 IEEE. The direct matrix converter has been proposed for many potential applications. However, it remains unexplored within the context of microgrids and distributed generation. This paper investigates the application of the direct matrix converter to these areas. Both the grid-connected and islanded operation modes are explored. Model predictive control is employed to achieve flexible active and reactive power regulation in the grid-connected mode, and stable sinusoidal voltage control in the islanded mode. It is also used to achieve grid voltage synchronization prior to grid connection. Simulation and experimental results verify the feasibility and effectiveness of the direct matrix converter when used in grid-connected and islanded microgrids. When used in the matrix converter-connected microgrid, model predictive control is effective in regulating the voltage and the power exchange with the grid

    Sequential model predictive control of direct matrix converter without weighting factors

    Full text link
    © 2018 IEEE. The direct matrix converter (MC) is a promising converter that performs direct AC-to-AC conversion. Model predictive control (MPC) is a simple and powerful control strategy for power electronic converters including the MC. However, weighting factor design and heavy computational burden impose significant challenges for this control strategy. This paper investigates the sequential MPC (SMPC) for a three-phase direct MC. In this control strategy, each control objective has an individual cost function and these cost functions are evaluated sequentially based on priority. The complex weighting factor design process is not required and the computational burden can be reduced. In addition, specifying the priority for control objectives can be achieved. A comparative simulation study with standard MPC is carried out in Matlab/Simulink. Control performance is compared to the standard MPC and found to be comparable. Simulation results verify the effectiveness of the proposed strategy
    corecore