3,970 research outputs found
Advanced thermal barrier coating systems
Current state-of-the-art thermal barrier coating (TBC) systems consist of partially stabilized zirconia coatings plasma sprayed over a MCrAlY bond coat. Although these systems have excellent thermal shock properties, they have shown themselves to be deficient for a number of diesel and aircraft applications. Two ternary ceramic plasma coatings are discussed with respect to their possible use in TBC systems. Zirconia-ceria-yttria (ZCY) coatings were developed with low thermal conductivities, good thermal shock resistance and improved resistance to vanadium containing environments, when compared to the baseline yttria stabilized zirconia (YSZ) coatings. In addition, dense zirconia-titania-yttria (ZTY) coatings were developed with particle erosion resistance exceeding conventional stabilized zirconia coatings. Both coatings were evaluated in conjunction with a NiCr-Al-Co-Y2O3 bond coat. Also, multilayer or hybrid coatings consisting of the bond coat with subsequent coatings of zirconia-ceria-yttria and zirconia-titania-yttria were evaluated. These coatings combine the enhanced performance characteristics of ZCY with the improved erosion resistance of ZTY coatings. Improvement in the erosion resistance of the TBC system should result in a more consistent delta T gradient during service. Economically, this may also translate into increased component life simply because the coating lasts longer
Assessing the effect of advertising expenditures upon sales: a Bayesian structural time series model
We propose a robust implementation of the Nerlove--Arrow model using a
Bayesian structural time series model to explain the relationship between
advertising expenditures of a country-wide fast-food franchise network with its
weekly sales. Thanks to the flexibility and modularity of the model, it is well
suited to generalization to other markets or situations. Its Bayesian nature
facilitates incorporating \emph{a priori} information (the manager's views),
which can be updated with relevant data. This aspect of the model will be used
to present a strategy of budget scheduling across time and channels.Comment: Published at Applied Stochastic Models in Business and Industry,
https://onlinelibrary.wiley.com/doi/full/10.1002/asmb.246
TARGET MARKETS FOR RETAIL OUTLETS OF LANDSCAPE PLANTS
Merchandisers of landscape plants can increase the effectiveness of their marketing strategies by identifying target markets. Using a full information maximum likelihood tobit procedure on a system of three equations, target markets for different types of retail outlets in Georgia were identified. The results lend support and empirical evidence to the premise that different retail outlet types have different target markets and thus should develop different market strategies. The estimated target markets are identified and possible marketing strategies suitable for each type of retail outlet are suggested.Crop Production/Industries,
Ergodicity Breaking in a Deterministic Dynamical System
The concept of weak ergodicity breaking is defined and studied in the context
of deterministic dynamics. We show that weak ergodicity breaking describes a
weakly chaotic dynamical system: a nonlinear map which generates subdiffusion
deterministically. In the non-ergodic phase non-trivial distribution of the
fraction of occupation times is obtained. The visitation fraction remains
uniform even in the non-ergodic phase. In this sense the non-ergodicity is
quantified, leading to a statistical mechanical description of the system even
though it is not ergodic.Comment: 11 pages, 4 figure
Chaotic properties of systems with Markov dynamics
We present a general approach for computing the dynamic partition function of
a continuous-time Markov process. The Ruelle topological pressure is identified
with the large deviation function of a physical observable. We construct for
the first time a corresponding finite Kolmogorov-Sinai entropy for these
processes. Then, as an example, the latter is computed for a symmetric
exclusion process. We further present the first exact calculation of the
topological pressure for an N-body stochastic interacting system, namely an
infinite-range Ising model endowed with spin-flip dynamics. Expressions for the
Kolmogorov-Sinai and the topological entropies follow.Comment: 4 pages, to appear in the Physical Review Letter
Shuttle/spacelab MMAP/electromagnetic environment experiment phase B definition study
Progress made during the first five months of the Phase B definition study for the MMAP/Electromagnetic Environment Experiment (EEE) was described. An antenna/receiver assembly has been defined and sized for stowing in a three pallet bay area in the shuttle. Six scanning modes for the assembly are analyzed and footprints for various antenna sizes are plotted. Mission profiles have been outlined for a 400 km height, 57 deg inclination angle, circular orbit. Viewing time over 7 geographical areas are listed. Shuttle interfaces have been studied to determine what configuration the antenna assembly must have to be shared with other experiments of the Microwave Multi-Applications Payload (MMAP) and to be stowed in the shuttle bay. Other results reported include a frequency plan, a proposed antenna subsystem design, a proposed receiver design, preliminary outlines of the experiment controls and an analysis of on-board and ground data processing schemes
Courant-Dorfman algebras and their cohomology
We introduce a new type of algebra, the Courant-Dorfman algebra. These are to
Courant algebroids what Lie-Rinehart algebras are to Lie algebroids, or Poisson
algebras to Poisson manifolds. We work with arbitrary rings and modules,
without any regularity, finiteness or non-degeneracy assumptions. To each
Courant-Dorfman algebra (\R,\E) we associate a differential graded algebra
\C(\E,\R) in a functorial way by means of explicit formulas. We describe two
canonical filtrations on \C(\E,\R), and derive an analogue of the Cartan
relations for derivations of \C(\E,\R); we classify central extensions of
\E in terms of H^2(\E,\R) and study the canonical cocycle
\Theta\in\C^3(\E,\R) whose class obstructs re-scalings of the
Courant-Dorfman structure. In the nondegenerate case, we also explicitly
describe the Poisson bracket on \C(\E,\R); for Courant-Dorfman algebras
associated to Courant algebroids over finite-dimensional smooth manifolds, we
prove that the Poisson dg algebra \C(\E,\R) is isomorphic to the one
constructed in \cite{Roy4-GrSymp} using graded manifolds.Comment: Corrected formulas for the brackets in Examples 2.27, 2.28 and 2.29.
The corrections do not affect the exposition in any wa
Measurement of entropy production rate in compressible turbulence
The rate of change of entropy is measured for a system of particles
floating on the surface of a fluid maintained in a turbulent steady state. The
resulting coagulation of the floaters allows one to relate to the
velocity divergence and to the Lyapunov exponents characterizing the behavior
of this system. The quantities measured from experiments and simulations are
found to agree well with the theoretical predictions.Comment: 7 Pages, 4 figures, 1 tabl
Application of pulse radiolysis to the study of proteins: chymotrypsin and trypsin
The one-electron reduction of chymotrypsin, trypsin, and their zymogens have been studied by pulse radiolysis. The optical spectra of the transient products from the two active enzymes display a pH-dependent band at 360 nm, associated with the histidine-electron adduct. The yield of the histidyl radical as a function of pH is consistent with a pK(a) less than 4.5, which suggests that the radical is located at the enzyme active site. The histidines of the proenzymes chymotrypsinogen and trypsinogen are unreactive towards the hydrated electron. We conclude that formation of the histidine-electron adduct at the serine protease active site is sensitive to the physical alterations which accompany protease activation
- …