81,237 research outputs found

    Coherent Exciton Lasing in ZnSe/ZnCdSe Quantum Wells?

    Full text link
    A new mechanism for exciton lasing in ZnSe/ZnCdSe quantum wells is proposed. Lasing, occurring below the lowest exciton line, may be associated with a BCS-like condensed (coherent) exciton state. This state is most stable at low temperatures for densities in the transition region separating the exciton Bose gas and the coherent exciton state. Calculations show the gain region to lie below the exciton line and to be separated from the absorption regime by a transparency region of width, for example, about 80 meV for a 90 Angstrom ZnSe/Zn_(0.75)Cd_(0.25)Se quantum well. Experimental observation of the transparency region using differential spectroscopy would confirm this picture.Comment: 9 pages + 3 figs contained in 4 postscript files to appear Appl. Phys. Lett. March 13, 199

    The role of nonthermal electrons in the optical continuum of stellar flares

    Get PDF
    We explore the possibility that the continuum emission in stellar flares is powered by nonthermal electrons accelerated during the flares. We compute the continuum spectra from an atmospheric model for a dMe star, AD Leo, at its quiescent state, when considering the nonthermal excitation and ionisation effects by precipitating electron beams. The results show that if the electron beam has an energy flux large enough, the U band brightening and, in particular, the U-B colour are roughly comparable with observed values for a typical large flare. Moreover, for electron beams with a moderate energy flux, a decrease of the emission at the Paschen continuum appears. This can explain at least partly the continuum dimming observed in some stellar flares. Adopting an atmospheric model for the flaring state can further raise the continuum flux but it yields a spectral colour incomparable with observations. This implies that the nonthermal effects may play the chief role in powering the continuum emission in some stellar flares.Comment: 6 pages, 4 figures, LaTeX (psfigs.sty), to appear in MNRA

    Nanostructuring of glass micro-nanowires

    No full text
    In the past decade, glass fiber tapers with micron or sub-micron diameter have attracted much attention and found a wide range of applications in optics [1] including mode filtering, supercontinuum generation, high-Q resonators and resonant sensing, optical trapping and optical propulsion. Nanofabrication can add new application opportunities, like Fabry-Perot resonators, Scanning near-field optical microscopy (SNOM) probe and surface plasmon resonators
    corecore