6,906 research outputs found

    Black-hole jets without large-scale net magnetic flux

    Full text link
    We propose a scenario for launching relativistic jets from rotating black holes, in which small-scale magnetic flux loops, sustained by disc turbulence, are forced to inflate and open by differential rotation between the black hole and the accretion flow. This mechanism does not require a large-scale net magnetic flux in the accreting plasma. Estimates suggest that the process could operate effectively in many systems, and particularly naturally and efficiently when the accretion flow is retrograde. We present the results of general-relativistic force-free electrodynamic simulations demonstrating the time evolution of the black hole's magnetosphere, the cyclic formation of jets, and the effect of magnetic reconnection. The jets are highly variable on timescales ~ 10-10^3 r_ g/c, where r_g is the black hole's gravitational radius. The reconnecting current sheets observed in the simulations may be responsible for the hard X-ray emission from accreting black holes.Comment: 5 pages, 2 figures. Accepted for publication in MNRAS Letter

    Nodal-antinodal dichotomy from pairing disorder in d-wave superconductors

    Full text link
    We study the basic features of the local density of states (LDOS) observed in STM experiments on high-Tc_c d-wave superconductors in the context of a minimal model of a d-wave superconductor which has {\it weakly} modulated off-diagonal disorder. We show that the low and high energy features of the LDOS are consistent with the observed experimental patterns and in particular, the anisotropic local domain features at high energies. At low energies, we obtain not only the scattering peaks predicted by the octet model, but also weak features that should be experimentally accessible. Finally, we show that the emerging features of the LDOS lose their correspondence with the features of the imposed disorder, as its complexity increases spatially
    • …
    corecore