844 research outputs found

    Diverse perspectives on the current state of genomic medicine: has the revolution begun?

    Get PDF
    A report on the Future of Genomic Medicine IV meeting held in La Jolla, California, USA, 3-4 March 2011

    Facile fabrication of lateral nanowire wrap-gate devices with improved performance

    Full text link
    We present a simple fabrication technique for lateral nanowire wrap-gate devices with high capacitive coupling and field-effect mobility. Our process uses e-beam lithography with a single resist-spinning step, and does not require chemical etching. We measure, in the temperature range 1.5-250 K, a subthreshold slope of 5-54 mV/decade and mobility of 2800-2500 cm2/Vscm^2/Vs -- significantly larger than previously reported lateral wrap-gate devices. At depletion, the barrier height due to the gated region is proportional to applied wrap-gate voltage.Comment: 3 pages, 3 figure

    Investigation on the Pulse-Height Distribution of Electron

    Get PDF

    Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene NEMS resonators

    Full text link
    We use suspended graphene electromechanical resonators to study the variation of resonant frequency as a function of temperature. Measuring the change in frequency resulting from a change in tension, from 300 K to 30 K, allows us to extract information about the thermal expansion of monolayer graphene as a function of temperature, which is critical for strain engineering applications. We find that thermal expansion of graphene is negative for all temperatures between 300K and 30K. We also study the dispersion, the variation of resonant frequency with DC gate voltage, of the electromechanical modes and find considerable tunability of resonant frequency, desirable for applications like mass sensing and RF signal processing at room temperature. With lowering of temperature, we find that the positively dispersing electromechanical modes evolve to negatively dispersing ones. We quantitatively explain this crossover and discuss optimal electromechanical properties that are desirable for temperature compensated sensors.Comment: For supplementary information and high resolution figures please go to http://www.tifr.res.in/~deshmukh/publication.htm
    corecore