40 research outputs found

    Modelling Heat Transfer of Carbon Nanotubes

    Full text link
    Modelling heat transfer of carbon nanotubes is important for the thermal management of nanotube-based composites and nanoelectronic device. By using a finite element method for three-dimensional anisotropic heat transfer, we have simulated the heat conduction and temperature variations of a single nanotube, a nanotube array and a part of nanotube-based composite surface with heat generation. The thermal conductivity used is obtained from the upscaled value from the molecular simulations or experiments. Simulations show that nanotube arrays have unique cooling characteristics due to its anisotropic thermal conductivity.Comment: 10 pages, 4 figure

    Optically induced forces and torques:Interactions between nanoparticles in a laser beam

    Get PDF
    Distinctive optical forces and torques arise between nanoparticles irradiated by intense laser radiation. These forces, associated with a pairwise process of stimulated scattering, prove to enable the possibility of producing significant modifications to both the form and magnitude of interparticle forces, with additional contributions arising in the case of dipolar materials. Moreover, such forces have the capacity to generate unusual patterns of nanoscale response, entirely controlled by the input beam characteristics- principally the optical frequency, intensity, and polarization. Based on quantum electrodynamical theory, a general result is secured for the laser-induced force under arbitrary conditions, incorporating both static and dynamic coupling mechanisms. Specific features of the results are identified for pairs of particles with prolate cylindrical symmetry, e.g., carbon nanotubes, where it is shown that the laser-induced forces and torques are sensitive functions of the pair spacing and orientation, and the laser beam geometry; significantly, they can be either repulsive or attractive according to conditions. For nanoparticles trapped in a Laguerre-Gaussian laser beam the results also reveal additional and highly distinctive torques that suggest further possibilities for nanomanipulation with light. The paper concludes with a discussion on several potential applications of such forces. © 2005 The American Physical Society

    Dispersion force for materials relevant for micro and nanodevices fabrication

    Full text link
    The dispersion (van der Waals and Casimir) force between two semi-spaces are calculated using the Lifshitz theory for different materials relevant for micro and nanodevices fabrication, namely, gold, silicon, gallium arsenide, diamond and two types of diamond-like carbon (DLC), silicon carbide, silicon nitride and silicon dioxide. The calculations were performed using recent experimental optical data available in the literature, usually ranging from the far infrared up to the extreme ultraviolet bands of the electromagnetic spectrum. The results are presented in the form of a correction factor to the Casimir force predicted between perfect conductors, for the separation between the semi-spaces varying from 1 nanometre up to 1 micrometre. The relative importance of the contributions to the dispersion force of the optical properties in different spectral ranges is analyzed. The role of the temperature for semiconductors and insulators is also addressed. The results are meant to be useful for the estimation of the impact of the Casimir and van der Waals forces on the operational parameters of micro and nanodevices
    corecore