21 research outputs found

    The influence of the thickness of the Cds emitter layer on the performance of a CIGS solar cell with acceptor defects

    Full text link
    In this work, we simulated a solar cell based on CIGS with simple default acceptor, using software (SCAPS) version 3.302 in order to study certain parameters. In particular, we have varied the thickness of the CdS emitter (0.05 mum, 0.04 mum and 0.03 mum) to study its influence on the performance of the cell. We were able to record that the energy efficiency increased from 16.50% for a thickness of 0.05 mum of the emitter to 16.87% for a thickness of 0.03 mum of the emitter. We also noted an improvement in other parameters, such as the form factor from FF = 79.81% to 80.10%, with the decrease in the thickness of the CdS. And from the Nyquist diagram, we also determined parameters like the series resistance to get an idea on the equivalent electrical circuit of the studied cell

    An African Approach for Risk Reduction of Soil Contaminated by Obsolete Pesticides

    Get PDF
    Since the 1950s, large amounts of pesticides were shipped to Africa for locust control, but did not arrive at the proper place or proper time thereby rendering them obsolete. Stockpiles of these pesticides have created a serious problem and The Africa Stockpiles Programme (ASP), launched by FAO, is designed to rid Africa of stockpiles and to dispose of them in an environmentally sound manner (ASP, 2009). From July to August 2007, an investigation mission was organized by FAO pesticide management programme, in collaboration with Wageningen University and Research Centre and the relevant national counterpart institutions of the Ministries of Agriculture and the Ministries of Environment in Mali and Mauritania. During the investigation, three sites in Mali and three sites in Mauretania were visited in the summer of 2007. High concentrations of pesticides were found in soils on the stockpiles. From a riskbased point of view, contaminations are only a risk if they are or may become available. Based on the results obtained and results of analysis of the samples taken, risk reduction proposals have been developed. All proposals are based on stimulation of the possibilities of biological degradation of the pesticides in combination with isolation and preventing rain water from transporting the pesticides. The results were discussed in May 2008 and the first implementation was started in Molodo (Mali) in July 2008

    Changes in N-Transforming Archaea and Bacteria in Soil during the Establishment of Bioenergy Crops

    Get PDF
    Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie) on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR) and diversity (barcoded pyrosequencing) of key functional genes (nifH, bacterial/archaeal amoA and nosZ) and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop), in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA) not bacteria (AOB), indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community

    Nitrogenase Gene Amplicons from Global Marine Surface Waters Are Dominated by Genes of Non-Cyanobacteria

    Get PDF
    Cyanobacteria are thought to be the main N2-fixing organisms (diazotrophs) in marine pelagic waters, but recent molecular analyses indicate that non-cyanobacterial diazotrophs are also present and active. Existing data are, however, restricted geographically and by limited sequencing depths. Our analysis of 79,090 nitrogenase (nifH) PCR amplicons encoding 7,468 unique proteins from surface samples (ten DNA samples and two RNA samples) collected at ten marine locations world-wide provides the first in-depth survey of a functional bacterial gene and yield insights into the composition and diversity of the nifH gene pool in marine waters. Great divergence in nifH composition was observed between sites. Cyanobacteria-like genes were most frequent among amplicons from the warmest waters, but overall the data set was dominated by nifH sequences most closely related to non-cyanobacteria. Clusters related to Alpha-, Beta-, Gamma-, and Delta-Proteobacteria were most common and showed distinct geographic distributions. Sequences related to anaerobic bacteria (nifH Cluster III) were generally rare, but preponderant in cold waters, especially in the Arctic. Although the two transcript samples were dominated by unicellular cyanobacteria, 42% of the identified non-cyanobacterial nifH clusters from the corresponding DNA samples were also detected in cDNA. The study indicates that non-cyanobacteria account for a substantial part of the nifH gene pool in marine surface waters and that these genes are at least occasionally expressed. The contribution of non-cyanobacterial diazotrophs to the global N2 fixation budget cannot be inferred from sequence data alone, but the prevalence of non-cyanobacterial nifH genes and transcripts suggest that these bacteria are ecologically significant

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Special Section on Condition Monitoring and Fault Accommodation in Electric and Hybrid Propulsion Systems

    No full text
    LGEP 2014 ID = 1675International audienc

    Two Active Fault-Tolerant Control Schemes of Induction-Motor Drive in EV or HEV

    No full text
    corecore