98 research outputs found

    Single particle spectrum of the flux phase in the FM Kondo Model

    Full text link
    We investigate the 2D ferromagnetic Kondo lattice model for manganites with classical corespins at Hund's rule coupling J_H=6, with antiferromagnetic superexchange 0.03 < J' < 0.05. We employ canonical and grand canonical unbiased Monte Carlo simulations and find paramagnetism, weak ferromagnetism and the Flux phase, depending on doping and on J'. The observed single particle spectrum in the flux phase differs from the idealized infinite lattice case, but agrees well with an idealized finite lattice case with thermal fluctuations.Comment: contribution to the SCES04 conferenc

    Spin-orbital physics for p orbitals in alkali RO_2 hyperoxides --- generalization of the Goodenough-Kanamori rules

    Full text link
    We derive a realistic spin-orbital model at finite Hund's exchange for alkali hyperoxides. We find that, due to the geometric frustration of the oxygen lattice, spin and orbital waves destabilize both spin and p-orbital order in almost all potential ground states. We show that the orbital order induced by the lattice overrules the one favoured by superexchange and that this, together with the large interorbital hopping, leads to generalized Goodenough-Kanamori rules. They (i) lift the geometric frustration of the lattice, and (ii) explain the observed layered C-type antiferromagnetic order in alkali hyperoxides. This is confirmed by a spin-wave dispersion with no soft-mode behavior presented here as a prediction for future experiments.Comment: 7 pages, 5 figures; accepted in EP

    Spectral properties of orbital polarons in Mott insulators

    Full text link
    We address the spectral properties of Mott insulators with orbital degrees of freedom, and investigate cases where the orbital symmetry leads to Ising-like superexchange in the orbital sector. The paradigm of a hole propagating by its coupling to quantum fluctuations, known from the spin t-J model, then no longer applies. We find instead that when one of the two orbital flavors is immobile, as in the Falicov-Kimball model, trapped orbital polarons coexist with free hole propagation emerging from the effective three-site hopping in the regime of large on-site Coulomb interaction U. The spectral functions are found analytically in this case within the retraceable path approximation in one and two dimensions. On the contrary, when both of the orbitals are active, as in the model for t2gt_{2g} electrons in two dimensions, we find propagating polarons with incoherent scattering dressing the moving hole and renormalizing the quasiparticle dispersion. Here, the spectral functions, calculated using the self-consistent Born approximation, are anisotropic and depend on the orbital flavor. Unbiased conclusions concerning the spectral properties are established by comparing the above results for the orbital t-J models with those obtained using the variational cluster approximation or exact diagonalization for the corresponding Hubbard models. The present work makes predictions concerning the essential features of photoemission spectra of certain fluorides and vanadates.Comment: 26 pages, 16 figures; to appear in Physical Review

    Magnetism of one-dimensional Wigner lattices and its impact on charge order

    Full text link
    The magnetic phase diagram of the quarter-filled generalized Wigner lattice with nearest- and next-nearest-neighbor hopping t_1 and t_2 is explored. We find a region at negative t_2 with fully saturated ferromagnetic ground states that we attribute to kinetic exchange. Such interaction disfavors antiferromagnetism at t_2 <0 and stems from virtual excitations across the charge gap of the Wigner lattice, which is much smaller than the Mott-Hubbard gap proportional to U. Remarkably, we find a strong dependence of the charge structure factor on magnetism even in the limit U to infinity, in contrast to the expectation that charge ordering in the Wigner lattice regime should be well described by spinless fermions. Our results, obtained using the density-matrix renormalization group and exact diagonalization, can be transparently explained by means of an effective low-energy Hamiltonian

    Magnetic properties of spin-orbital polarons in lightly doped cobaltates

    Full text link
    We present a numerical treatment of a spin-orbital polaron model for Na_xCoO_2 at small hole concentration (0.7 < x < 1). We demonstrate how the polarons account for the peculiar magnetic properties of this layered compound: They explain the large susceptibility; their internal degrees of freedom lead both to a negative Curie-Weiss temperature and yet to a ferromagnetic intra-layer interaction, thereby resolving a puzzling contradiction between these observations. We make specific predictions on the momentum and energy location of excitations resulting from the internal degrees of freedom of the polaron, and discuss their impact on spin-wave damping.Comment: 4+ pages, 6 figures, accepted for publication in Phys. Rev. Let

    Theory for Magnetism and Triplet Superconductivity in LiFeAs

    Full text link
    Superconducting pnictides are widely found to feature spin-singlet pairing in the vicinity of an antiferromagnetic phase, for which nesting between electron and hole Fermi surfaces is crucial. LiFeAs differs from the other pnictides by (i) poor nesting properties and (ii) unusually shallow hole pockets. Investigating magnetic and pairing instabilities in an electronic model that incorporates these differences, we find antiferromagnetic order to be absent. Instead we observe almost ferromagnetic fluctuations which drive an instability toward spin-triplet p-wave superconductivity.Comment: Published versio

    Hole propagation in the orbital compass models

    Get PDF
    We explore the propagation of a single hole in the generalized quantum compass model which interpolates between fully isotropic antiferromagnetic phase in the Ising model and nematic order of decoupled antiferromagnetic chains for frustrated compass interactions. We observe coherent hole motion due to either interorbital hopping or due to the three-site effective hopping, while quantum spin fluctuations in the ordered background do not play any role
    corecore