6,185 research outputs found
Spacetime Defects: von K\'arm\'an vortex street like configurations
A special arrangement of spinning strings with dislocations similar to a von
K\'arm\'an vortex street is studied. We numerically solve the geodesic
equations for the special case of a test particle moving along twoinfinite rows
of pure dislocations and also discuss the case of pure spinning defects.Comment: 9 pages, 2figures, CQG in pres
The ambivalent shadow of the pre-Wilsonian rise of international law
The generation of American international lawyers who founded the American Society of International Law in 1906 and nurtured the soil for what has been retrospectively called a “moralistic legalistic approach to international relations” remains little studied. A survey of the rise of international legal literature in the U.S. from the mid-19th century to the eve of the Great War serves as a backdrop to the examination of the boosting effect on international law of the Spanish American War in 1898. An examination of the Insular Cases before the US Supreme Court is then accompanied by the analysis of a number of influential factors behind the pre-war rise of international law in the U.S. The work concludes with an examination of the rise of natural law doctrines in international law during the interwar period and the critiques addressed.by the realist founders of the field of “international relations” to the “moralistic legalistic approach to international relation
Cognition-Enhancing Drugs: Can We Say No?
Normative analysis of cognition-enhancing drugs frequently weighs the liberty interests of drug users against egalitarian commitments to a level playing field. Yet those who would refuse to engage in neuroenhancement may well find their liberty to do so limited in a society where such drugs are widespread. To the extent that unvarnished emotional responses are world-disclosive, neurocosmetic practices also threaten to provide a form of faulty data to their users. This essay examines underappreciated liberty-based and epistemic rationales for regulating cognition-enhancing drugs
Primordial Entropy Production and Lambda-driven Inflation from Quantum Einstein Gravity
We review recent work on renormalization group (RG) improved cosmologies
based upon a RG trajectory of Quantum Einstein Gravity (QEG) with realistic
parameter values. In particular we argue that QEG effects can account for the
entire entropy of the present Universe in the massless sector and give rise to
a phase of inflationary expansion. This phase is a pure quantum effect and
requires no classical inflaton field.Comment: 12 pages, 4 figures, IGCG-07 Pun
The stability of the O(N) invariant fixed point in three dimensions
We study the stability of the O(N) fixed point in three dimensions under
perturbations of the cubic type. We address this problem in the three cases
by using finite size scaling techniques and high precision Monte
Carlo simulations. It is well know that there is a critical value
below which the O(N) fixed point is stable and above which the cubic fixed
point becomes the stable one. While we cannot exclude that , as recently
claimed by Kleinert and collaborators, our analysis strongly suggests that
coincides with 3.Comment: latex file of 18 pages plus three ps figure
Deterministic reaction models with power-law forces
We study a one-dimensional particles system, in the overdamped limit, where
nearest particles attract with a force inversely proportional to a power of
their distance and coalesce upon encounter. The detailed shape of the
distribution function for the gap between neighbouring particles serves to
discriminate between different laws of attraction. We develop an exact
Fokker-Planck approach for the infinite hierarchy of distribution functions for
multiple adjacent gaps and solve it exactly, at the mean-field level, where
correlations are ignored. The crucial role of correlations and their effect on
the gap distribution function is explored both numerically and analytically.
Finally, we analyse a random input of particles, which results in a stationary
state where the effect of correlations is largely diminished
Dynamics and delocalisation transition for an interface driven by a uniform shear flow
We study the effect of a uniform shear flow on an interface separating the
two broken-symmetry ordered phases of a two-dimensional system with
nonconserved scalar order parameter. The interface, initially flat and
perpendicular to the flow, is distorted by the shear flow. We show that there
is a critical shear rate, \gamma_c, proportional to 1/L^2, (where L is the
system width perpendicular to the flow) below which the interface can sustain
the shear. In this regime the countermotion of the interface under its
curvature balances the shear flow, and the stretched interface stabilizes into
a time-independent shape whose form we determine analytically. For \gamma >
\gamma_c, the interface acquires a non-zero velocity, whose profile is shown to
reach a time-independent limit which we determine exactly. The analytical
results are checked by numerical integration of the equations of motion.Comment: 5 page
Possible Detection of Causality Violation in a Non-local Scalar Model
We consider the possibility that there may be causality violation detectable
at higher energies. We take a scalar nonlocal theory containing a mass scale
as a model example and make a preliminary study of how the causality
violation can be observed. We show how to formulate an observable whose
detection would signal causality violation. We study the range of energies
(relative to ) and couplings to which the observable can be used.Comment: Latex, 30 page
Some non perturbative calculations on spin glasses
Models of spin glasses are studied with a phase transition discontinuous in
the Parisi order parameter. It is assumed that the leading order corrections to
the thermodynamic limit of the high temperature free energy are due to the
existence of a metastable saddle point in the replica formalism. An ansatz is
made on the form of the metastable point and its contribution to the free
energy is calculated. The Random Energy Model is considered along with the
p-spin and the p-state Potts Models in their p < infinity expansion.Comment: 12 pages, LaTe
Improving the Efficiency of an Ideal Heat Engine: The Quantum Afterburner
By using a laser and maser in tandem, it is possible to obtain laser action
in the hot exhaust gases involved in heat engine operation. Such a "quantum
afterburner" involves the internal quantum states of working gas atoms or
molecules as well as the techniques of cavity quantum electrodynamics and is
therefore in the domain of quantum thermodynamics. As an example, it is shown
that Otto cycle engine performance can be improved beyond that of the "ideal"
Otto heat engine.Comment: 5 pages, 3 figure
- …