126 research outputs found
Toward the realization of a primary low-pressure standard using a superconducting microwave resonator
We describe a primary gas pressure standard based on the measurement of the refractive index of helium gas using a microwave resonant cavity in the range between 500 Pa and 20 kPa. To operate in this range, the sensitivity of the microwave refractive gas manometer (MRGM) to low-pressure variations is substantially enhanced by a niobium coating of the resonator surface, which becomes superconducting at temperatures below 9 K, allowing one to achieve a frequency resolution of about 0.3 Hz at 5.2 GHz, corresponding to a pressure resolution below 3 mPa at 20 Pa. The determination of helium pressure requires precise thermometry but is favored by the remarkable accuracy achieved by ab initio calculations of the thermodynamic and electromagnetic properties of the gas. The overall standard uncertainty of the MRGM is estimated to be of the order of 0.04%, corresponding to 0.2 Pa at 500 and 8.1 Pa at 20 kPa, with major contributions from thermometry and the repeatability of microwave frequency measurements. A direct comparison of the pressures realized by the MRGM with the reference provided by a traceable quartz transducer shows relative pressure differences between 0.025% at 20 kPa and -1.4% at 500 Pa. (c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
Determination of the Boltzmann constant k from the speed of sound in helium gas at the triple point of water
partially_open6The Boltzmann constant k has been determined from a measurement of the speed of sound in helium gas in a quasi-spherical resonator (volume 0.5 l) maintained at a temperature close to the triple point of water (273.16 K). The acoustic velocity c is deduced from measured acoustic resonance frequencies and the dimensions of the quasi-sphere, the latter being obtained via simultaneous microwave resonance. Values of c are extrapolated to the zero pressure limit of ideal gas behaviour. We find J⋅K−1, a result consistent with previous measurements in our group and elsewhere. The value for k, which has a relative standard uncertainty of 1.02 ppm, lies 0.02 ppm below that of the CODATA 2010 adjustment.mixedPitre, L; Risegari, L; Sparasci, F; Plimmer, M D; Himbert, M E; Giuliano Albo, P APitre, L; Risegari, L; Sparasci, F; Plimmer, M D; Himbert, M E; Giuliano Albo, P
Laser cooling of a diatomic molecule
It has been roughly three decades since laser cooling techniques produced
ultracold atoms, leading to rapid advances in a vast array of fields.
Unfortunately laser cooling has not yet been extended to molecules because of
their complex internal structure. However, this complexity makes molecules
potentially useful for many applications. For example, heteronuclear molecules
possess permanent electric dipole moments which lead to long-range, tunable,
anisotropic dipole-dipole interactions. The combination of the dipole-dipole
interaction and the precise control over molecular degrees of freedom possible
at ultracold temperatures make ultracold molecules attractive candidates for
use in quantum simulation of condensed matter systems and quantum computation.
Also ultracold molecules may provide unique opportunities for studying chemical
dynamics and for tests of fundamental symmetries. Here we experimentally
demonstrate laser cooling of the molecule strontium monofluoride (SrF). Using
an optical cycling scheme requiring only three lasers, we have observed both
Sisyphus and Doppler cooling forces which have substantially reduced the
transverse temperature of a SrF molecular beam. Currently the only technique
for producing ultracold molecules is by binding together ultracold alkali atoms
through Feshbach resonance or photoassociation. By contrast, different proposed
applications for ultracold molecules require a variety of molecular
energy-level structures. Our method provides a new route to ultracold
temperatures for molecules. In particular it bridges the gap between ultracold
temperatures and the ~1 K temperatures attainable with directly cooled
molecules (e.g. cryogenic buffer gas cooling or decelerated supersonic beams).
Ultimately our technique should enable the production of large samples of
molecules at ultracold temperatures for species that are chemically distinct
from bialkalis.Comment: 10 pages, 7 figure
Al0.6Ga0.4As x-ray avalanche photodiodes for spectroscopy
No description supplie
High-resolution vacuum-ultraviolet and ultraviolet photoionization spectroscopy of krypton
Accurate spectroscopy of krypton is performed on five transitions from the (4
Should science educators deal with the science/religion issue?
I begin by examining the natures of science and religion before looking at the ways in which they relate to one another. I then look at a number of case studies that centre on the relationships between science and religion, including attempts to find mechanisms for divine action in quantum theory and chaos theory, creationism, genetic engineering and the writings of Richard Dawkins. Finally, I consider some of the pedagogical issues that would need to be considered if the science/religion issue is to be addressed in the classroom. I conclude that there are increasing arguments in favour of science educators teaching about the science/religion issue. The principal reason for this is to help students better to learn science. However, such teaching makes greater demands on science educators than has generally been the case. Certain of these demands are identified and some specific suggestions are made as to how a science educator might deal with the science/religion issue. © 2008 Taylor & Francis
Welfare convergence, bureaucracy, and moral distancing at the food bank
This paper seeks to extend geographic thinking on the changing constitution of the UK welfare state, suggesting the need to supplement ideas of the “shadow state” with an analysis of the blurring of the bureaucratic practices through which welfare is now delivered by public, private and third sector providers alike. Focusing on the growing convergence of the bureaucratic practices of benefits officials and food bank organisations, we interrogate the production of moral distance that characterise both. We reveal the ideological values embedded in voucher and referral systems used by many food banks, and the ways in which these systems further stigmatise and exclude people in need of support. Contrasting these practices with those of a variety of “ethical insurgents”, we suggest that food banks are sites of both the further cementing and of challenge to the injustices of Britain's new welfare apparatus
Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.
Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
- …