1,133,716 research outputs found

    Note on exponential families of distributions

    Full text link
    We show that an arbitrary probability distribution can be represented in exponential form. In physical contexts, this implies that the equilibrium distribution of any classical or quantum dynamical system is expressible in grand canonical form.Comment: 5 page

    On the Tidal Dissipation of Obliquity

    Full text link
    We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde or 90^{o} orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.Comment: 6 pages, 4 figures, accepted at ApJ

    Toward a Deterministic Model of Planetary Formation VII: Eccentricity Distribution of Gas Giants

    Full text link
    The ubiquity of planets and diversity of planetary systems reveal planet formation encompass many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches leads to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interaction between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamical interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass-eccentricity and semimajor axis-eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (> 30AU) gas giants with nearly circular orbits.Comment: 54 pages, 14 Figures; accepted for publication in Astrophysical Journa

    Self-assembled germanium islands grown on (001) silicon substrates by low-pressure chemical vapor deposition

    No full text
    The time evolution of self-assembled Ge islands, during low-pressure chemical vapor deposition (LPCVD) of Ge on Si at 650 Deg C using high growth rates, has been investigated by atomic force microscopy, transmission electron microscopy, and Rutherford backscattering spectrometry. We have found three different island structures The smallest islands are "lens-shaped" and characterized by a rather narrow size distribution, ~4nm high and ~20nm wide. Next to form are a distinct population of multifaceted "dome shaped" islands, up to 25nm high and 80-150 nm wide. Finally, the largest islands that form are square-based truncated pyramids with a very narrow size distribution ~50nm high and ~250nm wide. The pyramidal islands normally seen in the intermediate size range (~150nm) are not observed. The small lens-shaped islands appear to be defect free, while some of the multifaceted islands as well as all the large truncated pyramids contain misfit dislocations. The existence of multifaceted islands, in the size range where multifaceted "dome shaped" islands have previously been reported, is attributed to the high growth rate used. Furthermore, under the growth conditions used, the truncated-pyramid-shaped islands are characterized by a very narrow size distribution

    Comparing verbal media for alarm handling: Speech versus textual displays

    Get PDF
    The rise of computers in command and control domains has meant that control operations can be performed via desk-based visual display terminals. This trend has also produced the potential to display information to operators in a variety of formats. Of particular interest has been the use of text-based displays for alarm presentation. There are possible limitations to the use of text for alarm presentation, not least of which is the need for a dedicated alarms display screen (or, at least, a display page). Given the capability of computers to synthesize speech, it is possible that speech-based alarms could generate the same information as text-based displays without the need for dedicated screen space. In this paper an experimental comparison of speech-based and text-based displays for presentation of alarms is reported. The findings show that speech leads to longer response times than text displays, but that it has minimal effect on the efficacy of fault handling. The results are discussed within the alarm initiated activities framework and implications for alarm system design are outlined

    Scanning Tunneling Spectroscopic Studies of the Effects of Dielectrics and Metallic Substrates on the Local Electronic Characteristics of Graphene

    Get PDF
    Atomically resolved imaging and spectroscopic characteristics of graphene grown by chemical vapor deposition (CVD) on copper foils are investigated and compared with those of mechanical exfoliated graphene on SiO_2. For exfoliated graphene, the local spectral deviations from ideal behavior may be attributed to strain induced by the SiO_2 substrate. For CVD grown graphene, the lattice structure appears strongly distorted by the underlying copper, with regions in direct contact with copper showing nearly square lattices whereas suspended regions from thermal relaxation exhibiting nearly honeycomb or hexagonal lattice structures. The electronic density of states (DOS) correlates closely with the atomic arrangements of carbon, showing excess zero-bias tunneling conductance and nearly energy-independent DOS for strongly distorted graphene, in contrast to the linearly dispersive DOS for suspended graphene. These results suggest that graphene can interact strongly with both metallic and dielectric materials in close proximity, leading to non-negligible modifications to the electronic properties
    corecore