8 research outputs found

    Public views on the donation and use of human biological samples in biomedical research: a mixed methods study

    Get PDF
    Objective A mixed methods study exploring the UK general public's willingness to donate human biosamples (HBSs) for biomedical research.<p></p> Setting Cross-sectional focus groups followed by an online survey.<p></p> Participants Twelve focus groups (81 participants) selectively sampled to reflect a range of demographic groups; 1110 survey responders recruited through a stratified sampling method with quotas set on sex, age, geographical location, socioeconomic group and ethnicity.<p></p> Main outcome measures (1) Identify participants’ willingness to donate HBSs for biomedical research, (2) explore acceptability towards donating different types of HBSs in various settings and (3) explore preferences regarding use and access to HBSs.<p></p> Results 87% of survey participants thought donation of HBSs was important and 75% wanted to be asked to donate in general. Responders who self-reported having some or good knowledge of the medical research process were significantly more likely to want to donate (p<0.001). Reasons why focus group participants saw donation as important included: it was a good way of reciprocating for the medical treatment received; it was an important way of developing drugs and treatments; residual tissue would otherwise go to waste and they or their family members might benefit. The most controversial types of HBSs to donate included: brain post mortem (29% would donate), eyes post mortem (35%), embryos (44%), spare eggs (48%) and sperm (58%). Regarding the use of samples, there were concerns over animal research (34%), research conducted outside the UK (35%), and research conducted by pharmaceutical companies (56%), although education and discussion were found to alleviate such concerns.<p></p> Conclusions There is a high level of public support and willingness to donate HBSs for biomedical research. Underlying concerns exist regarding the use of certain types of HBSs and conditions under which they are used. Improved education and more controlled forms of consent for sensitive samples may mitigate such concerns.<p></p&gt

    Consent for the use of human biological samples for biomedical research: a mixed methods study exploring the UK public’s preferences

    Get PDF
    OBJECTIVE: A mixed-methods study exploring the UK general public's views towards consent for the use of biosamples for biomedical research.<p></p> SETTING: Cross-sectional population-based focus groups followed by an online survey.<p></p> PARTICIPANTS: 12 focus groups (81 participants) selectively sampled to reflect a range of demographic groups; 1110 survey responders recruited through a stratified sampling method with quotas set on sex, age, geographical location, socioeconomic group and ethnicity.<p></p> MAIN OUTCOME MEASURES: (1) Views on the importance of consent when donating residual biosamples for medical research; (2) preferences for opt-in or opt-out consent approaches and (3) preferences for different consent models.<p></p> RESULTS: Participants believed obtaining consent for use of residual biosamples was important as it was 'morally correct' to ask, and enabled people to make an active choice and retain control over their biosamples. Survey responders preferred opt-in consent (55%); the strongest predictor was being from a low socioeconomic group (OR 2.22, 95% CI 1.41 to 3.57, p=0.001) and having a religious affiliation (OR 1.36, 95% CI 1.01 to 1.81, p=0.04). Focus group participants had a slight preference for opt-out consent because by using this approach more biosamples would be available and facilitate research. Concerning preferred models of consent for research use of biosamples, survey responders preferred specific consent with recontact for each study for which their biosamples are eligible. Focus group participants preferred generic consent as it provided 'flexibility for researchers' and reduced the likelihood that biosamples would be wasted. The strongest predictor for preferring specific consent was preferring opt-in consent (OR 4.58, 95% CI 3.30 to 6.35, p=0.015) followed by non-'White' ethnicity (OR 2.94, 95% CI 1.23 to 7.14, p<0.001).<p></p> CONCLUSIONS: There is a preference among the UK public for ongoing choice and control over donated biosamples; however, increased knowledge and opportunity for discussion is associated with acceptance of less restrictive consent models for some people.<p></p&gt

    Using Single loxP Sites to Enhance Homologous Recombination: ts Mutants in Sec1 of Dictyostelium discoideum

    Get PDF
    Dictyostelium discoideum amoebae are haploid and, as they share many features with animal cells, should be an ideal creature for studying basic processes such as cell locomotion. Isolation of mutants in this amoeba has largely been limited to non-essential genes: nsfA-the gene for NEM-sensitive factor-remains the only essential gene for which conditional (ts) mutants exist. These ts mutants were generated by gene replacement using a library of mutagenised nsfA containing a selectable marker: transformants were then screened for temperature sensitivity. The success of this approach depended on the high level of homologous recombination prevailing at this locus: approximately 95% of selected clones were homologous recombinants. This is unusually high for Dictyostelium: homologous recombination at other loci is usually much less, usually between 0-30%, making the isolation of ts mutants much more tedious.In trying to make ts mutants in sec1A, homologous recombination was found to be only approximately 25%. A new approach, involving single loxP sites, was investigated. LoxP sites are 34 bp sequences recognised by Cre recombinase and between which this enzyme catalyses recombination. A Dictyostelium line containing a single loxP site adjacent to the 3' end of the sec1A gene was engineered. A sec1A replacement DNA also containing a single loxP site in a homologous position was then introduced into this cell line. In the presence of CRE recombinase, homologous recombination increased to approximately 80% at this locus, presumably largely driven by intermolecular recombination between the two single loxP sites.A route to increase the rate of homologous recombination at a specific locus, sec1A, is described which enabled the isolation of 30 ts mutants in sec1A. One of these, sec1Ats1,has been studied and found to cease moving at the restrictive temperature. The approach described here may be valuable for enhancing homologous recombination at specified loci and thus for introducing mutations into specific genes in Dictyostelium and other creatures
    corecore