362 research outputs found
Deep Halpha imagery of the Eridanus shells
A deep \ha image of interlocking filamentary arcs of nebulosity has been
obtained with a wide-field ( 30\degree diameter) narrow-band filter
camera combined with a CCD as a detector. The resultant mosaic of images,
extending to a galactic latitude of 65, has been corrected for field
distortions and had galactic coordinates superimposed on it to permit accurate
correlations with the most recent H{\sc i} (21 cm), X-ray (0.75 kev) and FIR
(IRAS 100 m) maps.
Furthermore, an upper limit of 0.13 arcsec/yr to the expansion proper motion
of the primary 25\degree long nebulous arc has been obtained by comparing a
recent \ha image obtained with the San Pedro Martir telescope of its
filamentary edge with that on a POSS E plate obtained in 1951.
It is concluded that these filamentary arcs are the superimposed images of
separate shells (driven by supernova explosions and/or stellar winds) rather
than the edges of a single `superbubble' stretching from Barnard's Arc (and the
Orion Nebula) to these high galactic latitudes. The proper motion measurement
argues against the primary \ha emitting arc being associated with the giant
radio loop (Loop 2) except in extraordinary circumstances.Comment: 9 pages, 5 figures, accepted for MNRAS publicatio
An Updated Catalog of 4680 Northern Eclipsing Binaries with Algol-Type light curve morphology in the Catalina Sky Surveys
We present an updated catalog of 4680 northern eclipsing binaries (EBs) with
Algol-type light curve morphology (i.e., with well-defined beginning and end of
primary and secondary eclipses), using data from the Catalina Sky Surveys. Our
work includes revised period determinations, phenomenological parameters of the
light curves, and system morphology classification based on machine learning
techniques. While most of the new periods are in excellent agreement with those
provided in the original Catalina catalogs, improved values are now available
for ~10% of the stars. A total of 3456 EBs were classified as detached and 449
as semi-detached, while 145 cannot be classified unambiguously into either
subtype. The majority of the SD systems seems to be comprised of short-period
Algols. By applying color criteria, we searched for K- and M-type dwarfs in
these data, and present a subsample of 609 EB candidates for further
investigation. We report 119 EBs (2.5% of the total sample) that show maximum
quadrature light variations over long timescales, with periods bracketing the
range 4.5-18 yrs and fractional luminosity variance of 0.04-0.13. We discuss
possible causes for this, making use of models of variable starspot activity in
our interpretation of the results
Three-minute oscillations above sunspot umbra observed with SDO/AIA and NoRH
Three-minute oscillations over sunspot's umbra in AR 11131 were observed
simultaneously in UV/EUV emission by SDO/AIA and in radio emission by Nobeyama
Radioheliograph (NoRH). We use 24-hours series of SDO and 8-hours series of
NoRH observations to study spectral, spatial and temporal variations of
pulsations in the 5-9 mHz frequency range at different layers of the solar
atmosphere. High spatial and temporal resolution of SDO/AIA in combination with
long-duration observations allowed us to trace the variations of the cut-off
frequency and spectrum of oscillations across the umbra. We found that higher
frequency oscillations are more pronounced closer to the umbra's center, while
the lower frequencies concentrate to the peripheral parts. We interpreted this
discovery as a manifestation of variation of the magnetic field inclination
across the umbra at the level of temperature-minimum. Possible implications of
this interpretation for the diagnostics of sunspot atmospheres is discussed.Comment: 29 pages, 7 figures, in press ApJ, 201
Increasing the Fine Structure Visibility of the Hinode SOT Ca II H Filtergrams
We present the improved so-called Madmax (OMC) operator selecting maxima of
convexities computed in multiple directions around each pixel rewritten in
MatLab and shown to be very efficient for pattern recognition.
The aim of the algorithm is to trace the bright hair-like features (for ex.
chromospheric thin jets or spicules) of solar ultimate observations polluted by
a noise of different origins. This popular spatial operator uses the second
derivative in the optimally selected direction for which its absolute value has
a maximum value. Accordingly, it uses the positivity of the resulting intensity
signal affected by a superposed noise. The results are illustrated using a test
artificially generated image and real SOT (Hinode) images are also used, to
make your own choice of the sensitive parameters to use in improving the
visibility of images.Comment: 12 pages, 3 figurs, submitted in Solar Physic
- …