97 research outputs found

    No Eigenvalue in Finite Quantum Electrodynamics

    Get PDF
    We re-examine Quantum Electrodynamics (QED) with massless electron as a finite quantum field theory as advocated by Gell-Mann-Low, Baker-Johnson, Adler, Jackiw and others. We analyze the Dyson-Schwinger equation satisfied by the massless electron in finite QED and conclude that the theory admits no nontrivial eigenvalue for the fine structure constant.Comment: 13 pages, Late

    Field dynamics and kink-antikink production in rapidly expanding systems

    Full text link
    Field dynamics in a rapidly expanding system is investigated by transforming from space-time to the rapidity - proper-time frame. The proper-time dependence of different contributions to the total energy is established. For systems characterized by a finite momentum cut-off, a freeze-out time can be defined after which the field propagation in rapidity space ends and the system decays into decoupled solitons, antisolitons and local vacuum fluctuations. Numerical simulations of field evolutions on a lattice for the (1+1)-dimensional Φ4\Phi^4 model illustrate the general results and show that the freeze-out time and average multiplicities of kinks (plus antikinks) produced in this 'phase transition' can be obtained from simple averages over the initial ensemble of field configurations. An extension to explicitly include additional dissipation is discussed. The validity of an adiabatic approximation for the case of an overdamped system is investigated. The (3+1)-dimensional generalization may serve as model for baryon-antibaryon production after heavy-ion collisions.Comment: 18 pages, 7 figures. Two references added. New subsection III.E added. Final version accepted for publication in PR

    Chiral symmetry breaking in Hamiltonian QCD in Coulomb gauge

    Full text link
    Spontaneous breaking of chiral symmetry is investigated in the Hamiltonian approach to QCD in Coulomb gauge. The quark wave functional is determined by the variational principle using an ansatz which goes beyond the commonly used BCS-type of wave functionals and includes the coupling of the quarks to the transversal spatial gluons. Using the lattice gluon propagator as input it is shown that the low energy chiral properties of the quarks, like the quark condensate and the constituent quark mass, are substantially increased by the coupling of the quarks to the spatial gluons. Our results compare favourably with the phenomenological values.Comment: 4 pages, 2 figure

    Nonperturbative Renormalization and the QCD Vacuum

    Full text link
    We present a self consistent approach to Coulomb gauge Hamiltonian QCD which allows one to relate single gluon spectral properties to the long range behavior of the confining interaction. Nonperturbative renormalization is discussed. The numerical results are in good agreement with phenomenological and lattice forms of the static potential.Comment: 23 pages in RevTex, 4 postscript figure

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Particle creation via relaxing hypermagnetic knots

    Full text link
    We demonstrate that particle production for fermions coupled chirally to an Abelian gauge field like the hypercharge field is provided by the microscopic mechanism of level crossing. For this purpose we use recent results on zero modes of Dirac operators for a class of localized hypermagnetic knots.Comment: Latex, 10 pages, no figure

    Super Multi-Instantons in Conformal Chiral Superspace

    Full text link
    We reformulate self-dual supersymmetric theories directly in conformal chiral superspace, where superconformal invariance is manifest. The superspace can be interpreted as the generalization of the usual Atiyah-Drinfel'd-Hitchin-Manin twistors (the quaternionic projective line), the real projective light-cone in six dimensions, or harmonic superspace, but can be reduced immediately to four-dimensional chiral superspace. As an example, we give the 't Hooft and ADHM multi-instanton constructions for self-dual super Yang-Mills theory. In both cases, all the parameters are represented as a single, irreducible, constant tensor.Comment: 21 pg., uuencoded compressed postscript file (twist.ps.Z.uu), other formats (.dvi, .ps, .ps.Z, 8-bit .tex) available at http://insti.physics.sunysb.edu/~siegel/preprints or at ftp://max.physics.sunysb.edu/preprints/siege

    Event Reconstruction in the PHENIX Central Arm Spectrometers

    Full text link
    The central arm spectrometers for the PHENIX experiment at the Relativistic Heavy Ion Collider have been designed for the optimization of particle identification in relativistic heavy ion collisions. The spectrometers present a challenging environment for event reconstruction due to a very high track multiplicity in a complicated, focusing, magnetic field. In order to meet this challenge, nine distinct detector types are integrated for charged particle tracking, momentum reconstruction, and particle identification. The techniques which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure

    Decoupling of Massive Right-handed Neutrinos

    Get PDF
    We investigate the effect of B+L - violating anomalous generation of massive right-handed neutrinos on their decoupling, when the right-handed neutrino mass is considerably greater than the right-handed gauge boson masses. Considering normal annihilation channels, the Lee-Weinberg type of calculation, in this case, gives an upper bound of about 700 Gev, which casts doubt on the existence of such a right-handed neutrino mass greater than right-handed gauge boson masses. We examine the possibility that a consideration of anomalous effects related to the SU(2)_R gauge group may turn this into a lower bound of the order of 100 Tev.Comment: 28 Pages, Latex, 2 figure

    The s ---> d gamma decay in and beyond the Standard Model

    Get PDF
    The New Physics sensitivity of the s ---> d gamma transition and its accessibility through hadronic processes are thoroughly investigated. Firstly, the Standard Model predictions for the direct CP-violating observables in radiative K decays are systematically improved. Besides, the magnetic contribution to epsilon prime is estimated and found subleading, even in the presence of New Physics, and a new strategy to resolve its electroweak versus QCD penguin fraction is identified. Secondly, the signatures of a series of New Physics scenarios, characterized as model-independently as possible in terms of their underlying dynamics, are investigated by combining the information from all the FCNC transitions in the s ---> d sector.Comment: 54 pages, 14 eps figure
    corecore