1,004 research outputs found
The Evolution of Sacred Soli from Oratorios: Baroque Period to the Twentieth Century
The purpose of this thesis is to demonstrate briefly the evolution of musieal styles and characteristics found in sacred soli from oratorios over the course of the Baroque Period to the Twentieth Century. The author chose eight representative arias for examination in this project, with two arias being chosen for each of four periods, the Baroque, Classical, Romantic, and Twentieth Century, selected because of the prominence of both the composer and the aria in the context of choral history. The thesis is divided into four basic sections, the Baroque, Classical, Romantic, and Twentieth Century. The author will discuss historical influences from each period as background information for more specific examination of the representative pieces. Each aria will be discussed with regards to specific qualities of the larger work from which it is taken, its function within this work, musical styles and characteristics found within the aria inherent to the period, and any qualities making it unique to the style or period. When appropriate, musical examples will be included to demonstrate specific instances of unique musical characteristics. By examining these characteristics, the author intends to establish an evolutionary path of sacred solo literature
Irreducible Multiplets of Three-Quark Operators on the Lattice: Controlling Mixing under Renormalization
High luminosity accelerators have greatly increased the interest in
semi-exclusive and exclusive reactions involving nucleons. The relevant
theoretical information is contained in the nucleon wavefunction and can be
parametrized by moments of the nucleon distribution amplitudes, which in turn
are linked to matrix elements of three-quark operators. These can be calculated
from first principles in lattice QCD. However, on the lattice the problems of
operator mixing under renormalization are rather involved. In a systematic
approach we investigate this issue in depth. Using the spinorial symmetry group
of the hypercubic lattice we derive irreducibly transforming three-quark
operators, which allow us to control the mixing pattern.Comment: 13 page
Electron-spin-resonance in the doped spin-Peierls compound Cu(1-x)Ni(x)GeO3
ESR-study of the Ni-doped spin-Peierls compound CuGeO3 has been performed in
the frequency range 9-75 GHz. At low temperatures the g-factor is smaller than
the value expected for Cu- and Ni-ions. This anomaly is explained by the
formation of magnetic clusters around the Ni-ions within a nonmagnetic
spin-Peierls matrix. The transition into the AFM-state detected earlier by
neutron scattering for doped samples was studied by means of ESR. For x=0.032 a
gap in the magnetic resonance spectrum is found below the Neel temperature and
the spectrum is well described by the theory of antiferromagnetic resonance
based on the molecular field approximation. For x=0.017 the spectrum below the
Neel point remained gapless. The gapless spectrum of the antiferromagnetic
state in weekly doped samples is attributed to the small value of the Neel
order parameter and to the magnetically disordered spin-Peierls background.Comment: 16 pages, LATEX, 12 figures, submitted to Journal of Physics :
Condensed Matte
Finite strain Landau theory of high pressure phase transformations
The properties of materials near structural phase transitions are often
successfully described in the framework of Landau theory. While the focus is
usually on phase transitions, which are induced by temperature changes
approaching a critical temperature T-c, here we will discuss structural phase
transformations driven by high hydrostatic pressure, as they are of major
importance for understanding processes in the interior of the earth. Since at
very high pressures the deformations of a material are generally very large,
one needs to apply a fully nonlinear description taking physical as well as
geometrical nonlinearities (finite strains) into account. In particular it is
necessary to retune conventional Landau theory to describe such phase
transitions. In Troster et al (2002 Phys. Rev. Lett. 88 55503) we constructed a
Landau-type free energy based on an order parameter part, an order
parameter-(finite) strain coupling and a nonlinear elastic term. This model
provides an excellent and efficient framework for the systematic study of phase
transformations for a wide range of materials up to ultrahigh pressures
Separation of the magnetic phases at the N\'{e}el point in the diluted spin-Peierls magnet CuGeO3
The impurity induced antiferromagnetic ordering of the doped spin-Peierls
magnet Cu(1-x)Mg(x)GeO(3) was studied by ESR technique. Crystals with the Mg
concentration x<4% demonstrate a coexistence of paramagnetic and
antiferromagnetic ESR modes. This coexistence indicates the separation of a
macroscopically uniform sample in the paramagnetic and antiferromagnetic
phases. In the presence of the long-range spin-Peierls order (in a sample with
x=1.71%) the volume of the antiferromagnetic phase immediately below the
N\'{e}el point T_N is much smaller than the volume of the paramagnetic phase.
In the presence of the short-range spin-Peierls order (in samples with x=2.88%,
x= 3.2%) there are comparable volumes of paramagnetic and antiferromagnetic
phases at T=T_N. The fraction of the antiferromagnetic phase increases with
lowering temperature. In the absence of the spin-Peierls dimerization (at
x=4.57%)the whole sample exhibits the transition into the antiferromagnetic
state and there is no phase separation. The phase separation is explained by
the consideration of clusters of staggered magnetization located near impurity
atoms. In this model the areas occupied by coherently correlated spins expand
with decreasing temperature and the percolation of the ordered area through a
macroscopic distance occurs.Comment: 7pages, 10 figure
Magnetic Resonance of the Intrinsic Defects of the Spin-Peierls Magnet CuGeO3
ESR of the pure monocrystals of CuGeO3 is studied in the frequency range 9-75
GHz and in the temperature interval 1.2-25 K. The splitting of the ESR line
into several spectral components is observed below 5 K, in the temperature
range where the magnetic susceptibility is suppressed by the spin-Peierls
dimerization. The analysis of the magnetic resonance signals allows one to
separate the signals of the S=1/2- and S=1 defects of the spin-Peierls phase.
The value of g-factor of these signals is close to that of the Cu-ion. The
additional line of the magnetic resonance is characterized by an anomalous
value of the g-factor and by the threshold-like increase of the microwave
susceptibility when the microwave power is increasing. The ESR signals are
supposingly attributed to two types of the planar magnetic defects, arising at
the boundaries of the domains of the spin-Peierls state with the different
values of the phase of the dimerization.Comment: LATEX-text, 12 PS-figures, typos corrected, LATEX-style change
Statistics of low-energy levels of a one-dimensional weakly localized Frenkel exciton: A numerical study
Numerical study of the one-dimensional Frenkel Hamiltonian with on-site
randomness is carried out. We focus on the statistics of the energy levels near
the lower exciton band edge, i. e. those determining optical response. We found
that the distribution of the energy spacing between the states that are well
localized at the same segment is characterized by non-zero mean, i.e. these
states undergo repulsion. This repulsion results in a local discrete energy
structure of a localized Frenkel exciton. On the contrary, the energy spacing
distribution for weakly overlapping local ground states (the states with no
nodes within their localization segments) that are localized at different
segments has zero mean and shows almost no repulsion. The typical width of the
latter distribution is of the same order as the typical spacing in the local
discrete energy structure, so that this local structure is hidden; it does not
reveal itself neither in the density of states nor in the linear absorption
spectra. However, this structure affects the two-exciton transitions involving
the states of the same segment and can be observed by the pump-probe
spectroscopy. We analyze also the disorder degree scaling of the first and
second momenta of the distributions.Comment: 10 pages, 6 figure
Guidelines for the Management of Severe Traumatic Brain Injury: 2020 Update of the Decompressive Craniectomy Recommendations
© Congress of Neurological Surgeons 2020. When the fourth edition of the Brain Trauma Foundation\u27s Guidelines for the Management of Severe Traumatic Brain Injury were finalized in late 2016, it was known that the results of the RESCUEicp (Trial of Decompressive Craniectomy for Traumatic Intracranial Hypertension) randomized controlled trial of decompressive craniectomy would be public after the guidelines were released. The guideline authors decided to proceed with publication but to update the decompressive craniectomy recommendations later in the spirit of living guidelines, whereby topics are updated more frequently, and between new editions, when important new evidence is published. The update to the decompressive craniectomy chapter presented here integrates the findings of the RESCUEicp study as well as the recently published 12-mo outcome data from the DECRA (Decompressive Craniectomy in Patients With Severe Traumatic Brain Injury) trial. Incorporation of these publications into the body of evidence led to the generation of 3 new level-IIA recommendations; a fourth previously presented level-IIA recommendation remains valid and has been restated. To increase the utility of the recommendations, we added a new section entitled Incorporating the Evidence into Practice. This summary of expert opinion provides important context and addresses key issues for practitioners, which are intended to help the clinician utilize the available evidence and these recommendations. The full guideline can be found at: https://braintrauma.org/guidelines/guidelines-for-the-management-of-severe-tbi-4th-ed#/
Therapeutic Hypothermia Reduces Intracranial Pressure and Partial Brain Oxygen Tension in Patients with Severe Traumatic Brain Injury:Preliminary Data from the Eurotherm3235 Trial
Traumatic brain injury (TBI) is a significant cause of disability and death and a huge economic burden throughout the world. Much of the morbidity associated with TBI is attributed to secondary brain injuries resulting in hypoxia and ischemia after the initial trauma. Intracranial hypertension and decreased partial brain oxygen tension (P(bt)O(2)) are targeted as potentially avoidable causes of morbidity. Therapeutic hypothermia (TH) may be an effective intervention to reduce intracranial pressure (ICP), but could also affect cerebral blood flow (CBF). This is a retrospective analysis of prospectively collected data from 17 patients admitted to the Western General Hospital, Edinburgh. Patients with an ICP >20 mmHg refractory to initial therapy were randomized to standard care or standard care and TH (intervention group) titrated between 32°C and 35°C to reduce ICP. ICP and P(bt)O(2) were measured using the Licox system and core temperature was recorded through rectal thermometer. Data were analyzed at the hour before cooling, the first hour at target temperature, 2 consecutive hours at target temperature, and after 6 hours of hypothermia. There was a mean decrease in ICP of 4.3±1.6 mmHg (p<0.04) from 15.7 to 11.4 mmHg, from precooling to the first epoch of hypothermia in the intervention group (n=9) that was not seen in the control group (n=8). A decrease in ICP was maintained throughout all time periods. There was a mean decrease in P(bt)O(2) of 7.8±3.1 mmHg (p<0.05) from 30.2 to 22.4 mmHg, from precooling to stable hypothermia, which was not seen in the control group. This research supports others in demonstrating a decrease in ICP with temperature, which could facilitate a reduction in the use of hyperosmolar agents or other stage II interventions. The decrease in P(bt)O(2) is not below the suggested treatment threshold of 20 mmHg, but might indicate a decrease in CBF
- …