756 research outputs found
Automating the Surveillance of Mosquito Vectors from Trapped Specimens Using Computer Vision Techniques
Among all animals, mosquitoes are responsible for the most deaths worldwide.
Interestingly, not all types of mosquitoes spread diseases, but rather, a
select few alone are competent enough to do so. In the case of any disease
outbreak, an important first step is surveillance of vectors (i.e., those
mosquitoes capable of spreading diseases). To do this today, public health
workers lay several mosquito traps in the area of interest. Hundreds of
mosquitoes will get trapped. Naturally, among these hundreds, taxonomists have
to identify only the vectors to gauge their density. This process today is
manual, requires complex expertise/ training, and is based on visual inspection
of each trapped specimen under a microscope. It is long, stressful and
self-limiting. This paper presents an innovative solution to this problem. Our
technique assumes the presence of an embedded camera (similar to those in
smart-phones) that can take pictures of trapped mosquitoes. Our techniques
proposed here will then process these images to automatically classify the
genus and species type. Our CNN model based on Inception-ResNet V2 and Transfer
Learning yielded an overall accuracy of 80% in classifying mosquitoes when
trained on 25,867 images of 250 trapped mosquito vector specimens captured via
many smart-phone cameras. In particular, the accuracy of our model in
classifying Aedes aegypti and Anopheles stephensi mosquitoes (both of which are
deadly vectors) is amongst the highest. We present important lessons learned
and practical impact of our techniques towards the end of the paper
Multiple evolutionary trajectories have led to the emergence of races in <em>Fusarium oxysporum</em> f. sp. <em>lycopersici</em>
Race 1 isolates of Fusarium oxysporum f. sp. lycopersici (FOL) are characterized by the presence of AVR1 in their genomes. The product of this gene, Avr1, triggers resistance in tomato cultivars carrying resistance gene I. In FOL race 2 and race 3 isolates, AVR1 is absent, and hence they are virulent on tomato cultivars carrying I. In this study, we analyzed an approximately 100-kb genomic fragment containing the AVR1 locus of FOL race 1 isolate 004 (FOL004) and compared it to the sequenced genome of FOL race 2 isolate 4287 (FOL4287). A genomic fragment of 31 kb containing AVR1 was found to be missing in FOL4287. Further analysis suggests that race 2 evolved from race 1 by deletion of this 31-kb fragment due to a recombination event between two transposable elements bordering the fragment. A worldwide collection of 71 FOL isolates representing races 1, 2, and 3, all known vegetative compatibility groups (VCGs), and five continents was subjected to PCR analysis of the AVR1 locus, including the two bordering transposable elements. Based on phylogenetic analysis using the EF1-α gene, five evolutionary lineages for FOL that correlate well with VCGs were identified. More importantly, we show that FOL races evolved in a stepwise manner within each VCG by the loss of function of avirulence genes in a number of alternative ways. IMPORTANCE Plant-pathogenic microorganisms frequently mutate to overcome disease resistance genes that have been introduced in crops. For the fungus Fusarium oxysporum f. sp. lycopersici, the causal agent of Fusarium wilt in tomato, we have identified the nature of the mutations that have led to the overcoming of the I and I-2 resistance genes in all five known clonal lineages, which include a newly discovered lineage. Five different deletion events, at least several of which are caused by recombination between transposable elements, have led to loss of AVR1 and overcoming of I. Two new events affecting AVR2 that led to overcoming of I-2 have been identified. We propose a reconstruction of the evolution of races in FOL, in which the same mutations in AVR2 and AVR3 have occurred in different lineages and the FOL pathogenicity chromosome has been transferred to new lineages several times
Points of Interest Coverage with Connectivity Constraints using Wireless Mobile Sensors
Part 7: Network Topology ConfigurationInternational audienceThe coverage of Points of Interest (PoI) is a classical requirement in mobile wireless sensor applications. Optimizing the sensors self-deployment over a PoI while maintaining the connectivity between the sensors and the sink is thus a fundamental issue. This article addresses the problem of autonomous deployment o f mobile sensors that need to cover a predefined PoI with a connectivity constraints and provides the solution to it using Relative Neighborhood Graphs (RNG). Our deployment scheme minimizes the number of sensors used for connectivity thus increasing the number of monitoring sensors. Analytical results, simulation results and real implementation are provided to show the efficiency of our algorithm
Advancing of Cellular Signaling Pathways in Respiratory Diseases Using Nanocarrier based Drug Delivery Systems.
Cell Signaling pathways form an integral part of our existence, that allows the cells to comprehend a stimulus and respond back. Such reactions, to external cues from the environment, are required and are essential to regulate the normal functioning of our body. Abnormalities in the system arise when there are errors developed in these signals, resulting in a complication or a disease. Presently, respiratory diseases contribute to being the third leading cause of morbidity worldwide. According to the current statistics, over 339 million people who are asthmatic, 65 million who are suffering from COPD, 2.3 million who are lung cancer patients and 10 million are tuberculosis patients. This toll of statistics with chronic respiratory diseases leaves a heavy burden on society and nation annual health expenditure. Hence, a better understanding of the processes governing these cellular pathways will enable us to treat and manage these deadly respiratory diseases effectively. Moreover, it is important to comprehend the synergy and interplay of the cellular signaling pathways in respiratory diseases, which will enable us to explore and develop suitable strategies for targeted drug delivery. This review, in particular, focuses on the major respiratory diseases and further provides an in-depth discussion on the various cell signaling pathways that are involved in the pathophysiology of respiratory diseases. Moreover, the review also analyses the defining concepts about advanced nano-drug delivery systems involving various nanocarriers and propose newer prospects to minimize the current challenges faced by researchers and formulation scientists
Circadian rhythm disruption and Alzheimer’s disease: The dynamics of a vicious cycle
All mammalian cells exhibit circadian rhythm in cellular metabolism and energetics. Autonomous cellular clocks are modulated by various pathways that are essential for robust time keeping. In addition to the canonical transcriptional translational feedback loop, several new pathways of circadian timekeeping - non-transcriptional oscillations, post-translational modifications, epigenetics and cellular signaling in the circadian clock - have been identified. The physiology of circadian rhythm is expansive, and its link to the neurodegeneration is multifactorial. Circadian rhythm disruption is prevelant in contamporary society where light-noise, shift-work, and transmeridian travel are commonplace, and is also reported from the early stages of Alzheimer's disease (AD). Circadian alignment by bright light therapy in conjunction with chronobiotics is beneficial for treating sundowning syndrome and other cognitive symptoms in advanced AD patients. We performed a comprehensive analysis of the clinical and translational reports to review the physiology of the circadian clock, delineate its dysfunction in AD, and unravel the dynamics of the vicious cycle between two pathologies. The review delineates the role of putative targets like clock proteins PER, CLOCK, BMAL1, ROR, and clock-controlled proteins like AVP, SIRT1, FOXO, and PK2 towards future approaches for management of AD. Furthermore, the role of circadian rhythm disruption in aging is delineated
- …