552 research outputs found

    Fractional statistics and duality: strong tunneling behavior of edge states of quantum Hall liquids in the Jain sequence

    Full text link
    While the values for the fractional charge and fractional statistics coincide for fractional Hall (FQH) states in the Laughlin sequence, they do not for more general FQH states, such as those in the Jain sequence. This mismatch leads to additional phase factors in the weak coupling expansion for tunneling between edge states which alter the nature of the strong tunneling limit. We show here how to construct a weak-strong coupling duality for generalized FQH states with simple unreconstructed edges. The correct dualization of quasiparticles into integer charged fermions is a consistency requirement for a theory of FQH edge states with a simple edge. We show that this duality also applies for weakly reconstructed edges.Comment: 4+epsilon page

    Colored noise in the fractional Hall effect: duality relations and exact results

    Full text link
    We study noise in the problem of tunneling between fractional quantum Hall edge states within a four probe geometry. We explore the implications of the strong-weak coupling duality symmetry existent in this problem for relating the various density-density auto-correlations and cross-correlations between the four terminals. We identify correlations that transform as either ``odd'' or ``anti-symmetric'', or ``even'' or ``symmetric'' quantities under duality. We show that the low frequency noise is colored, and that the deviations from white noise are exactly related to the differential conductance. We show explicitly that the relationship between the slope of the low frequency noise spectrum and the differential conductance follows from an identity that holds to {\it all} orders in perturbation theory, supporting the results implied by the duality symmetry. This generalizes the results of quantum supression of the finite frequency noise spectrum to Luttinger liquids and fractional statistics quasiparticles.Comment: 14 pages, 3 figure

    Entanglement Complexity in Quantum Many-Body Dynamics, Thermalization and Localization

    Get PDF
    Entanglement is usually quantified by von Neumann entropy, but its properties are much more complex than what can be expressed with a single number. We show that the three distinct dynamical phases known as thermalization, Anderson localization, and many-body localization are marked by different patterns of the spectrum of the reduced density matrix for a state evolved after a quantum quench. While the entanglement spectrum displays Poisson statistics for the case of Anderson localization, it displays universal Wigner-Dyson statistics for both the cases of many-body localization and thermalization, albeit the universal distribution is asymptotically reached within very different time scales in these two cases. We further show that the complexity of entanglement, revealed by the possibility of disentangling the state through a Metropolis-like algorithm, is signaled by whether the entanglement spectrum level spacing is Poisson or Wigner-Dyson distributed.Comment: Minor revision

    Out-of-equilibrium dynamical fluctuations in glassy systems

    Full text link
    In this paper we extend the earlier treatment of out-of-equilibrium mesoscopic fluctuations in glassy systems in several significant ways. First, via extensive simulations, we demonstrate that models of glassy behavior without quenched disorder display scalings of the probability of local two-time correlators that are qualitatively similar to that of models with short-ranged quenched interactions. The key ingredient for such scaling properties is shown to be the development of a critical-like dynamical correlation length, and not other microscopic details. This robust data collapse may be described in terms of a time-evolving Gumbel-like distribution. We develop a theory to describe both the form and evolution of these distributions based on a effective sigma-model approach.Comment: 20 pages, RevTex, 9 figure

    Income uncertainty and household savings in China

    Get PDF
    China's urban household saving rate has increased markedly since the mid-1990s and the age-savings profile has become U-shaped. To understand these patterns, we analyze a panel of urban Chinese households over the period 1989–2009. We document a sharp increase in income uncertainty, largely due to an increase in the variance in household income attributed to transitory idiosyncratic shocks. We then calibrate a buffer-stock savings model to obtain quantitative estimates of the impact of rising household-specific income uncertainty as well as another shock to household income—the pension reforms that were instituted in the late 1990s. Our calibrations suggest that rising income uncertainty and pension reforms lead younger and older households, respectively, to raise their saving rates significantly. These two factors account for two-thirds of the increase in China's urban household saving rate and the U-shaped age-savings profile.We are grateful to Loren Brandt, Robert Moffitt, two anonymous referees, as well as participants at the NBER Summer Institute, China Economics Summer Institute, IMF Research Seminar, and the Workshop on China's Macroeconomy at the University of Toronto for comments and suggestions. We thank Lei (Sandy) Ye for research assistance. The views expressed in this paper are those of the authors and do not necessarily reflect those of the institutions the authors are affiliated with.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.jdeveco.2013.07.01
    • …
    corecore