852 research outputs found
Weakly Z symmetric manifolds
We introduce a new kind of Riemannian manifold that includes weakly-, pseudo-
and pseudo projective- Ricci symmetric manifolds. The manifold is defined
through a generalization of the so called Z tensor; it is named "weakly Z
symmetric" and denoted by (WZS)_n. If the Z tensor is singular we give
conditions for the existence of a proper concircular vector. For non singular Z
tensor, we study the closedness property of the associated covectors and give
sufficient conditions for the existence of a proper concircular vector in the
conformally harmonic case, and the general form of the Ricci tensor. For
conformally flat (WZS)_n manifolds, we derive the local form of the metric
tensor.Comment: 13 page
Correlating contexts and NFR conflicts from event logs
In the design of autonomous systems, it is important to consider the preferences of the interested parties to improve the user experience. These preferences are often associated with the contexts in which each system is likely to operate. The operational behavior of a system must also meet various non-functional requirements (NFRs), which can present different levels of conflict depending on the operational context. This work aims to model correlations between the individual contexts and the consequent conflicts between NFRs. The proposed approach is based on analyzing the system event logs, tracing them back to the leaf elements at the specification level and providing a contextual explanation of the system’s behavior. The traced contexts and NFR conflicts are then mined to produce Context-Context and Context-NFR conflict sequential rules. The proposed Contextual Explainability (ConE) framework uses BERT-based pre-trained language models and sequential rule mining libraries for deriving the above correlations. Extensive evaluations are performed to compare the existing state-of-the-art approaches. The best-fit solutions are chosen to integrate within the ConE framework. Based on experiments, an accuracy of 80%, a precision of 90%, a recall of 97%, and an F1-score of 88% are recorded for the ConE framework on the sequential rules that were mined
SCARS: Suturing wounds due to conflicts between non-functional requirements in autonomous and robotic systems
In autonomous and robotic systems, the functional requirements (FRs) and non-functional requirements (NFRs) are gathered from multiple stakeholders. The different stakeholder requirements are associated with different components of the robotic system and with the contexts in which the system may operate. This aggregation of requirements from different sources (multiple stakeholders) often results in inconsistent or conflicting sets of requirements. Conflicts among NFRs for robotic systems heavily depend on features of actual execution contexts. It is essential to analyze the inconsistencies and conflicts among the requirements in the early planning phase to design the robotic systems in a systematic manner. In this work, we design and experimentally evaluate a framework, called SCARS, providing: (a) a domain-specific language extending the ROS2 Domain Specific Language (DSL) concepts by considering the different environmental contexts in which the system has to operate, (b) support to analyze their impact on NFRs, and (c) the computation of the optimal degree of NFR satisfaction that can be achieved within different system configurations. The effectiveness of SCARS has been validated on the iRobot (Formula presented.) Create (Formula presented.) 3 robot using Gazebo simulation
Achieving high coverage of larval-stage mosquito surveillance: challenges for a community-based mosquito control programme in urban Dar es Salaam, Tanzania
Background: Preventing malaria by controlling mosquitoes in their larval stages requires regular sensitive monitoring of vector populations and intervention coverage. The study assessed the effectiveness of operational, community-based larval habitat surveillance systems within the Urban Malaria Control Programme (UMCP) in urban Dar es Salaam, Tanzania. Methods: Cross-sectional surveys were carried out to assess the ability of community-owned resource persons (CORPs) to detect mosquito breeding sites and larvae in areas with and without larviciding. Potential environmental and programmatic determinants of habitat detection coverage and detection sensitivity of mosquito larvae were recorded during guided walks with 64 different CORPs to assess the accuracy of data each had collected the previous day. Results: CORPs reported the presence of 66.2% of all aquatic habitats (1,963/2,965), but only detected Anopheles larvae in 12.6% (29/230) of habitats that contained them. Detection sensitivity was particularly low for late-stage Anopheles (2.7%, 3/111), the most direct programmatic indicator of malaria vector productivity. Whether a CORP found a wet habitat or not was associated with his/her unfamiliarity with the area (Odds Ratio (OR) [95% confidence interval (CI)] = 0.16 [0.130, 0.203], P < 0.001), the habitat type (P < 0.001) or a fence around the compound (OR [95% CI] = 0.50 [0.386, 0.646], P < 0.001). The majority of mosquito larvae (Anophelines 57.8% (133/230) and Culicines 55.9% (461/825) were not reported because their habitats were not found. The only factor affecting detection of Anopheline larvae in habitats that were reported by CORPs was larviciding, which reduced sensitivity (OR [95% CI] = 0.37 [0.142, 0.965], P = 0.042). Conclusions: Accessibility of habitats in urban settings presents a major challenge because the majority of compounds are fenced for security reasons. Furthermore, CORPs under-reported larvae especially where larvicides were applied. This UMCP system for larval surveillance in cities must be urgently revised to improve access to enclosed compounds and the sensitivity with which habitats are searched for larvae
Applications of self-assembled monolayers in Materials Chemistry
Self-assembly provides a simple route to organise suitable organic molecules on noble metal and selected nanocluster surfaces by using monolayers of long chain organic molecules with various functionalities like -SH,-COOH,-NH2, silanes etc. These surfaces can be effectively used to build-up interesting nano level architectures. Flexibility with respect to the terminal functionalities of the organic molecules allows the control of the hydrophobicity or hydrophilicity of metal surface, while the selection of length scale can be used to tune the distant-dependent electron transfer behaviour. Organo-inorganic materials tailored in this fashion are extremely important in nanotechnology to construct nanoelctronic devices, sensor arrays, supercapacitors, catalysts, rechargeable power sources etc. by virtue of their size and shape-dependent electrical, optical or magnetic properties. The interesting applications of monolayers and monolayer-protected clusters in materials chemistry are discussed using recent examples of size and shape control of the properties of several metallic and semiconducting nanoparticles. The potential benefits of using these nanostructured systems for molecular electronic components are illustrated using Au and Ag nanoclusters with suitable bifunctional SAMs
Nitrated Fatty-Acids Distribution in Storage Biomolecules during Arabidopsis thaliana Development
The non-enzymatic interaction of polyunsaturated fatty acids with nitric oxide (NO) and de rived species results in the formation of nitrated fatty acids (NO2
-FAs). These signaling molecules can
release NO, reversibly esterify with complex lipids, and modulate protein function through the post translational modification called nitroalkylation. To date, NO2
-FAs act as signaling molecules during
plant development in plant systems and are involved in defense responses against abiotic stress
conditions. In this work, the previously unknown storage biomolecules of NO2
-FAs in Arabidopsis
thaliana were identified. In addition, the distribution of NO2
-FAs in storage biomolecules during plant
development was determined, with phytosterol esters (SE) and TAGs being reservoir biomolecules
in seeds, which were replaced by phospholipids and proteins in the vegetative, generative, and
senescence stages. The detected esterified NO2
-FAs were nitro-linolenic acid (NO2
-Ln), nitro-oleic
acid (NO2
-OA), and nitro-linoleic acid (NO2
-LA). The last two were detected for the first time in
Arabidopsis. The levels of the three NO2
-FAs that were esterified in both lipid and protein storage
biomolecules showed a decreasing pattern throughout Arabidopsis development. Esterification of
NO2
-FAs in phospholipids and proteins highlights their involvement in both biomembrane dynamics
and signaling processes, respectively, during Arabidopsis plant developmentThis research was funded by ERDF grants co-financed by the Spanish Ministry of Economy
and Competitiveness (Project PGC2018-096405-B-I00); the Junta de Andalucía (group BIO286); the
I+D+I project within the framework Programme of FEDER Andalucía 2014–2020 (Reference 1380901);
the grants for I+D+I projects, on a competitive basis, within the scope of the Andalusian plan for
research, development and innovation (Junta de Andalucía, PAIDI 2020, Reference: PY20_01002);
and the funding for the recruitment of researchers under Action 9 and 10 of the Research Support
Plan of the University of Jaén (2019–2020, R.02/10/2020; 2020–2021, R.01/01/2022)
Conservation tillage and residue management improve soil health and crop productivity-Evidence from a rice-maize cropping system in Bangladesh.
The rice-maize (R-M) system is rapidly expanding in Bangladesh due to its greater suitability for diverse soil types and environments. The present conventional method of cultivating puddled transplanted rice and maize is input-intensive, decreases soil health through intense ploughing, and ultimately reduces farm profitability. There is a need to investigate alternatives. Accordingly, we conducted a replicated 2-year (2020–2021) field study to investigate the effects of conservation agriculture (CA) based tillage and crop establishment (TCE) techniques and residue management practices on the physical, chemical, and biological properties of soil along with crop productivity and the profitability of rice-maize systems in the sandy loam soil of Northwest Bangladesh. Two TCE techniques Puddled transplanted rice (PTR) followed by Conventional tillage maize (CTM) and strip tillage direct-seeded rice (STDSR) followed by strip-tilled maize (STM) were assigned to the main plots and different percentages of crop residue retention (0, 25, and 50% by height) were allocated to the subplots. Results showed that a reduction in bulk density (BD), soil penetration resistance (SPR), and increased soil porosity were associated with STDSR/STM-based scenarios (strip tillage coupled with 25 and 50% residue retention). The soil organic carbon (SOC) fractions, such as dissolved organic C (DOC), light and heavy particulate organic matter C (POM-C), MAOM, and microbial biomass C (MBC) levels in the 0–10 cm layer under ST based treatments were 95, 8, 6, 2 and 45% greater, respectively, compared to CT with no residue treatment. When compared to the CT treatment, the DOC, light POM-C, heavy POM-C, and MAOM in the 10–20 cm layer with ST treatment were 8, 34, 25, 4 and 37% higher, respectively. Residue retention in ST increased average rice, maize, and system yields by 9.2, 14.0, and 14.12%, respectively, when compared to CT. The system gross margin and benefit-cost ratio (BCR) were 1,696 ha−1 and 2.15 under strip-tillage practices. Thus, our study suggests that CA could be an appropriate practice for sustaining soil fertility and crop yield under R-M systems in light-textured soils or other similar soils in Banglades
Static Safety for an Actor Dedicated Process Calculus by Abstract Interpretation
The actor model eases the definition of concurrent programs with non uniform
behaviors. Static analysis of such a model was previously done in a data-flow
oriented way, with type systems. This approach was based on constraint set
resolution and was not able to deal with precise properties for communications
of behaviors. We present here a new approach, control-flow oriented, based on
the abstract interpretation framework, able to deal with communication of
behaviors. Within our new analyses, we are able to verify most of the previous
properties we observed as well as new ones, principally based on occurrence
counting
A Logical Verification Methodology for Service-Oriented Computing
We introduce a logical verification methodology for checking behavioural properties of service-oriented computing systems. Service properties are described by means of SocL, a branching-time temporal logic that we have specifically designed to express in an effective way distinctive aspects of services, such as, e.g., acceptance of a request, provision of a response, and correlation among service requests and responses. Our approach allows service properties to be expressed in such a way that
they can be independent of service domains and specifications. We show an instantiation of our general methodology that uses the formal language COWS to conveniently specify services and the expressly developed software tool CMC to assist the user in the task of verifying SocL formulae over service specifications. We demonstrate feasibility and effectiveness of our methodology by means of the specification and the analysis of a case study in the automotive domain
- …