40 research outputs found

    Analysis of relative displacement between the HX wearable robotic exoskeleton and the user’s hand

    Get PDF
    BACKGROUND: Advances in technology are allowing for the production of several viable wearable robotic devices to assist with activities of daily living and with rehabilitation. One of the most pressing limitations to user satisfaction is the lack of consistency in motion between the user and the robotic device. The displacement between the robot and the body segment may not correspond because of differences in skin and tissue compliance, mechanical backlash, and/or incorrect fit. FINDINGS: This report presents the results of an analysis of relative displacement between the user’s hand and a wearable exoskeleton, the HX. HX has been designed to maximize comfort, wearability and user safety, exploiting chains with multiple degrees-of-freedom with a modular architecture. These appealing features may introduce several uncertainties in the kinematic performances, especially when considering the anthropometry, morphology and degree of mobility of the human hand. The small relative displacements between the hand and the exoskeleton were measured with a video-based motion capture system, while the user executed several different grips in different exoskeleton modes. CONCLUSIONS: The analysis furnished quantitative results about the device performance, differentiated among device modules and test conditions. In general, the global relative displacement for the distal part of the device was in the range 0.5–1.5 mm, while within 3 mm (worse but still acceptable) for displacements nearest to the hand dorsum. Conclusions over the HX design principles have been drawn, as well as guidelines for future developments. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1743-0003-11-147) contains supplementary material, which is available to authorized users

    Usability test of a hand exoskeleton for activities of daily living: an example of user-centered design

    No full text
    Purpose: (1) To assess a robotic device (Handexos) during the design process with regard to usability, end user satisfaction and safety, (2) to determine whether Handexos can improve the activities of daily living (ADLs) of spinal cord injury (SCI) patients and stroke patients with upper-limb dysfunction. Methods: During a 2-year development stage of the device, a total of 37 participants (aged 22–68), 28 clinicians (experts) and nine patients with SCI or stroke (end users) were included in a user-centered design process featuring usability tests. They performed five grasps wearing the device. The assessments were obtained at the end of the session by filling out a questionnaire and making suggestions. Results: The experts’ opinion was that the modified device was an improvement over the preliminary version, although this was not reflected in the scores. Whereas end user scores for comfort, grasp, performance and safety were above the sufficiency threshold, the scores for year 2 were lower than those for year 1. Conclusions: The findings demonstrate that although Handexos meets the initial functional requirements and underlines the potential for assisting SCI and post-stroke subjects in ADLs, several aspects such as mechanical complexity and low adaptability to different hand sizes need to be further addressed.Implications for RehabilitationWearable robotics devices could improve the activities of daily living in patients with spinal cord injury or stroke.They could be a tool for rehabilitation of the upper limb.Further usability tests to improve this type of tools are recommended
    corecore