156 research outputs found
Money laundering through consulting firms
The aim of this article is to illustrate potential conduits for money laundering in the consulting
sector in Austria, Germany, Liechtenstein, and Switzerland. A qualitative content
analysis of 100 semi-standardized expert interviews with both criminals and prevention
experts was conducted, along with a quantitative survey of 200 compliance officers, allowing
for the identification of concrete methods of money laundering in the consulting sector. Due
to their excellent reputation, consulting companies in German-speaking countries in Europe
continue to be extraordinarily attractive to money launderers. Most notably, they can be
used for layering and integration, as well as for working around various issues with tax
codes. As the qualitative findings are based on semi-standardized interviews, they are limited
to only the 100 interviewees’ perspectives. The identification of loopholes and weaknesses
in the current anti-money laundering mechanisms is meant to provide compliance officers,
law enforcement agencies, and legislators with valuable insights into how criminals operate,
with the aim of helping them to more effectively combat money laundering. While the
previous literature focuses on organizations fighting money laundering and on the improvement
of anti-money laundering measures, this article illustrates how money launderers
operate to avoid arrest. Prevention methods and criminal perspectives are equally taken
into account
Deficiency of Parkinson's disease-related gene Fbxo7 is associated with impaired mitochondrial metabolism by PARP activation
The Parkinson's disease (PD)-related protein F-box only protein 7 (Fbxo7) is the substrate-recognition component of the Skp1-Cullin-F-box protein E3 ubiquitin ligase complex. We have recently shown that PD-associated mutations in Fbxo7 disrupt mitochondrial autophagy (mitophagy), suggesting a role for Fbxo7 in modulating mitochondrial homeostasis. Here we report that Fbxo7 deficiency is associated with reduced cellular NAD(+) levels, which results in increased mitochondrial NADH redox index and impaired activity of complex I in the electron transport chain. Under these conditions of compromised respiration, mitochondrial membrane potential and ATP contents are reduced, and cytosolic reactive oxygen species (ROS) production is increased. ROS activates poly (ADP-ribose) polymerase (PARP) activity in Fbxo7-deficient cells. PARP inhibitor restores cellular NAD(+) content and redox index and ATP pool, suggesting that PARP overactivation is cause of decreased complex I-driven respiration. These findings bring new insight into the mechanism of Fbxo7 deficiency, emphasising the importance of mitochondrial dysfunction in PD
A phase 3 multicenter, prospective, open-label efficacy and safety study of immune globulin (human) 10% caprylate/chromatography purified in patients with myasthenia gravis exacerbations
Background: Myasthenia gravis (MG) is an autoimmune disorder affecting neuromuscular transmission. Exacerbations may involve increasing bulbar weakness and/or sudden respiratory failure, both of which can be critically disabling. Management of MG exacerbations includes plasma exchange and intravenous immunoglobulin (IVIG); they are equally effective, but patients experience fewer side effects with IVIG. The objective of this study was to assess the efficacy and safety of immune globulin caprylate/chromatography purified (IGIV-C) in subjects with MG exacerbations. Methods: This prospective, open-label, non-controlled 28-day clinical trial was conducted in adults with MG Foundation of America class IVb or V status. Subjects received IGIV-C 2 g/kg over 2 consecutive days (1 g/kg/day) and were assessed for efficacy/safety on Days 7, 14, 21, and 28. The primary efficacy endpoint was the change from Baseline in quantitative MG (QMG) score to Day 14. Secondary endpoints of clinical response, Baseline to Day 14, included at least a 3-point decrease in QMG and MG Composite and a 2-point decrease in MG-activities of daily living (MG-ADL). Results: Forty-nine subjects enrolled. The change in QMG score at Day 14 was significant (p < 0.001) in the Evaluable (-6.4, n = 43) and Safety (-6.7, n = 49) populations. Among evaluable subjects, Day 14 response rates were 77, 86, and 88% for QMG, MG Composite, and MG-ADL, respectively. IGIV-C showed good tolerability with no serious adverse events. Conclusions: The results of this study show that IGIV-C was effective, safe, and well tolerated in the treatment of MG exacerbations
Changes in CO2 Adsorption Affinity Related to Ni Doping in FeS Surfaces: A DFT-D3 Study
Metal sulphides constitute cheap, naturally abundant, and environmentally friendly materials for energy storage applications and chemistry. In particular, iron (II) monosulphide (FeS, mackinawite) is a material of relevance in theories of the origin of life and for heterogenous catalytic applications in the conversion of carbon dioxide (CO2) towards small organic molecules. In natural mackinawite, Fe is often substituted by other metals, however, little is known about how such substitutions alter the chemical activity of the material. Herein, the effect of Ni doping on the structural, electronic, and catalytic properties of FeS surfaces is explored via dispersion-corrected density functional theory simulations. Substitutional Ni dopants, introduced on the Fe site, are readily incorporated into the pristine matrix of FeS, in good agreement with experimental measurements. The CO2 molecule was found to undergo deactivation and partial desorption from the doped surfaces, mainly at the Ni site when compared to undoped FeS surfaces. This behaviour is attributed to the energetically lowered d-band centre position of the doped surface, as a consequence of the increased number of paired electrons originating from the Ni dopant. The reaction and activation energies of CO2 dissociation atop the doped surfaces were found to be increased when compared to pristine surfaces, thus helping to further elucidate the role Ni could have played in the reactivity of FeS. It is expected that Ni doping in other Fe-sulphides may have a similar effect, limiting the catalytic activity of these phases when this dopant is present at their surfaces
Первичная эмфизема легких у молодого мужчины, обусловленная гомозиготным дефицитом α1-антитрипсина (генотип ZZ): перспективы организации помощи больным
This review discusses alpha-1-antitripsin (AAT) deficiency that is a wide-spread autosomal-recessive monogenic enzymopathy related to PI gene mutations. The most serious injury related to AAT deficiency is primary emphysema. A role of AAT for normal growth and functioning of the lungs as well as for occurrence of various structural and functional disorders is reviewed in the articles. The authors' own findings about AAT deficiency prevalence in Russian population are also shown. Clinical features of AAT deficiency and diagnostic methods are described. Finally, a clinical report of primary pulmonary emphysema due to congenital AAT deficiency is demonstrated.Приводится клинический случай эмфиземы легких, связанный с гомозиготным дефицитом α1-антитрипсина, а также алгоритм диагностики
Experimental and Simulation Efforts in the Astrobiological Exploration of Exooceans
The icy satellites of Jupiter and Saturn are perhaps the most promising places in the Solar System regarding habitability. However, the potential habitable environments are hidden underneath km-thick ice shells. The discovery of Enceladus’ plume by the Cassini mission has provided vital clues in our understanding of the processes occurring within the interior of exooceans. To interpret these data and to help configure instruments for future missions, controlled laboratory experiments and simulations are needed. This review aims to bring together studies and experimental designs from various scientific fields currently investigating the icy moons, including planetary sciences, chemistry, (micro-)biology, geology, glaciology, etc. This chapter provides an overview of successful in situ, in silico, and in vitro experiments, which explore different regions of interest on icy moons, i.e. a potential plume, surface, icy shell, water and brines, hydrothermal vents, and the rocky core
The Future of Origin of Life Research: Bridging Decades-Old Divisions.
Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future. We find that even though classical approaches and theories-e.g. bottom-up and top-down, RNA world vs. metabolism-first-have been prevalent in origin of life research, they are ceasing to be mutually exclusive and they can and should feed integrating approaches. Here we focus on pressing questions and recent developments that bridge the classical disciplines and approaches, and highlight expectations for future endeavours in origin of life research
Human imprinted retrogenes exhibit non-canonical imprint chromatin signatures and reside in non-imprinted host genes
Imprinted retrotransposed genes share a common genomic organization including a promoter-associated differentially methylated region (DMR) and a position within the intron of a multi-exonic ‘host’ gene. In the mouse, at least one transcript of the host gene is also subject to genomic imprinting. Human retrogene orthologues are imprinted and we reveal that human host genes are not imprinted. This coincides with genomic rearrangements that occurred during primate evolution, which increase the separation between the retrogene DMRs and the host genes. To address the mechanisms governing imprinted retrogene expression, histone modifications were assayed at the DMRs. For the mouse retrogenes, the active mark H3K4me2 was associated with the unmethylated paternal allele, while the methylated maternal allele was enriched in repressive marks including H3K9me3 and H4K20me3. Two human retrogenes showed monoallelic enrichment of active, but not of repressive marks suggesting a partial uncoupling of the relationship between DNA methylation and repressive histone methylation, possibly due to the smaller size and lower CpG density of these DMRs. Finally, we show that the genes immediately flanking the host genes in mouse and human are biallelically expressed in a range of tissues, suggesting that these loci are distinct from large imprinted clusters
- …