1,413 research outputs found

    Modelling the light-curves of objects tidally disrupted by a black hole

    Full text link
    Tidal disruption by massive black holes is a phenomenon, during which a large part of gravitational energy can be released on a very short time-scale. The time-scales and energies involved during X-ray and IR flares observed in Galactic centre suggest that they may be related to tidal disruption events. Furthermore, aftermath of a tidal disruption of a star by super-massive black hole has been observed in some galaxies, e.g. RX J1242.6-1119A. All these discoveries increased the demand for tools for tidal disruption study in curved space-time. Here we summarise our study of general relativistic effects on tidal deformation of stars and compact objects.Comment: 2 pages, to appear in the proceedings of the JENAM 2008, Symposium 7: "Grand Challenges in Computational Astrophysics

    Do flares in Sagittarius A* reflect the last stage of tidal capture?

    Full text link
    In recent years the case for the presence of 3-4 10^6 M_sun black hole in our Galactic Center has gained strength from results of stellar dynamics observations and from the detection of several rapid X-ray and IR flares observed in the Sagittarius A* from 2000 to 2004. Here we explore the idea that such flares are produced when the central black hole tidally captures and disrupts a small body - e.g. a comet or an asteroid.Comment: 6 pages, 9 figures, acknowledgments added, to appear in the Proceedings of the Albert Einstein's Century International Conference, Paris 200

    Frequency-dependent Thermal Response of the Charge System and Restricted Sum Rules in La(2-x)Sr(x)CuO(4)

    Full text link
    By using new and previous measurements of the abab-plane conductivity σ1ab(ω,T)\sigma_1^{ab} (\omega,T) of La2x_{2-x}Srx_xCuO4_{4} (LSCO) it is shown that the spectral weight W=0Ωσ1ab(ω,T)dωW = \int_0^\Omega {\sigma_1^{ab} (\omega,T) d\omega} obeys the same law W=W0B(Ω)T2W = W_0 - B(\Omega) T^2 which holds for a conventional metal like gold, for Ω\Omega's below the plasma frequency. However B(Ω)B(\Omega), which measures the "thermal response" of the charge system, in LSCO exhibits a peculiar behavior which points towards correlation effects. In terms of hopping models, B(Ω)B(\Omega) is directly related to an energy scale tTt_T, smaller by one order of magnitude than the full bandwidth t0W0t_0 \sim W_0.Comment: 4 pages with 3 fig

    What brakes the Crab pulsar?

    Get PDF
    Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the radio timing solution. The aim of this paper is to find a global mathematical description of Crab pulsar's phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. From our analysis, we demonstrate that the power law index undergoes "instantaneous" changes at the time of observed jumps in rotational frequency (glitches). We find that the phase evolution of the Crab pulsar is dominated by a series of constant braking law episodes, with the braking index changing abruptly after each episode in the range of values between 2.1 and 2.6. Deviations from such a regular phase description behave as oscillations triggered by glitches and amount to fewer than 40 turns during the above period, in which the pulsar has made more than 2.0e10 turns. Our analysis does not favor the explanation that glitches are connected to phenomena occurring in the interior of the pulsar. On the contrary, timing irregularities and changes in slow down rate seem to point to electromagnetic interaction of the pulsar with the surrounding environment.Comment: 11 pages, 8 figures, 3 tables; accepted for publication in Astronomy & Astrophysic

    Effects of Superconductivity and Charge Order on the sub-Terahertz reflectivity of La1.875_{1.875}Ba0.125y_{0.125-y}Sry_{y}CuO4_4

    Full text link
    The reflectivity R(ω)R (\omega) of both the abab plane and the c axis of two single crystals of La1.875_{1.875}Ba0.125y_{0.125-y}Sry_{y}CuO4_4 has been measured down to 5 cm1^{-1}, using coherent synchrotron radiation below 30 cm1^{-1}. For yy = 0.085, a Josephson Plasma Resonance is detected at TTcT \ll T_c = 31 K in Rc(ω)R_{c} (\omega), and a far-infrared peak (FIP) appears in the optical conductivity below 50 K, where non-static charge ordering (CO) is reported by X-ray scattering. For yy = 0.05 (TcT_c = 10 K), a FIP is observed in the low-temperature tetragonal phase below the ordering temperature TCOT_{CO}. At 1/8 doping the peak frequency scales linearly with TCOT_{CO}, confirming that the FIP is an infrared signature of CO, either static or fluctuating.Comment: v2: longer version, 9 pages, 6 color figure
    corecore