472 research outputs found

    Nanosecond molecular relaxations in lipid bilayers studied by high energy resolution neutron scattering and in-situ diffraction

    Full text link
    We report a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in highly oriented solid supported phospholipid bilayers of the model system DMPC -d54 (deuterated 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine), hydrated with heavy water. Wave vector resolved quasi-elastic neutron scattering (QENS) is used to determine relaxation times τ\tau, which can be associated with different molecular components, i.e., the lipid acyl chains and the interstitial water molecules in the different phases of the model membrane system. The inelastic data are complemented both by energy resolved and energy integrated in-situ diffraction. From a combined analysis of the inelastic data in the energy and time domain, the respective character of the relaxation, i.e., the exponent of the exponential decay is also determined. From this analysis we quantify two relaxation processes. We associate the fast relaxation with translational diffusion of lipid and water molecules while the slow process likely stems from collective dynamics

    Asymptotic analysis of a secondary bifurcation of the one-dimensional Ginzburg-Landau equations of superconductivity

    Get PDF
    The bifurcation of asymmetric superconducting solutions from the normal solution is considered for the one-dimensional Ginzburg--Landau equations by the methods of formal asymptotics. The behavior of the bifurcating branch depends on the parameters d, the size of the superconducting slab, and Îș\kappa, the Ginzburg--Landau parameter. The secondary bifurcation in which the asymmetric solution branches reconnect with the symmetric solution branch is studied for values of (Îș,d)(\kappa,d) for which it is close to the primary bifurcation from the normal state. These values of (Îș,d)(\kappa,d) form a curve in the Îșd\kappa d-plane, which is determined. At one point on this curve, called the quintuple point, the primary bifurcations switch from being subcritical to supercritical, requiring a separate analysis. The results answer some of the conjectures of [A. Aftalion and W. C. Troy, Phys. D, 132 (1999), pp. 214--232]

    Scale-Free topologies and Activatory-Inhibitory interactions

    Full text link
    A simple model of activatory-inhibitory interactions controlling the activity of agents (substrates) through a "saturated response" dynamical rule in a scale-free network is thoroughly studied. After discussing the most remarkable dynamical features of the model, namely fragmentation and multistability, we present a characterization of the temporal (periodic and chaotic) fluctuations of the quasi-stasis asymptotic states of network activity. The double (both structural and dynamical) source of entangled complexity of the system temporal fluctuations, as an important partial aspect of the Correlation Structure-Function problem, is further discussed to the light of the numerical results, with a view on potential applications of these general results.Comment: Revtex style, 12 pages and 12 figures. Enlarged manuscript with major revision and new results incorporated. To appear in Chaos (2006

    Laboratory evidence of disseminated intravascular coagulation is associated with a fatal outcome in children with cerebral malaria despite an absence of clinically evident thrombosis or bleeding

    Get PDF
    Background A procoagulant state is implicated in cerebral malaria (CM ) pathogenesis, but whether disseminated intravascular coagulation (DIC ) is present or associated with a fatal outcome is unclear. Objectives To determine the frequency of overt DIC , according to ISTH criteria, in children with fatal and non‐fatal CM . Methods/patients Malawian children were recruited into a prospective cohort study in the following diagnostic groups: retinopathy‐positive CM (n = 140), retinopathy‐negative CM (n = 36), non‐malarial coma (n = 14), uncomplicated malaria (UM ), (n = 91), mild non‐malarial febrile illness (n = 85), and healthy controls (n = 36). Assays in the ISTH DIC criteria were performed, and three fibrin‐related markers, i.e. protein C, antithrombin, and soluble thrombomodulin, were measured. Results and conclusions Data enabling assignment of the presence or absence of ‘overt DIC ’ were available for 98 of 140 children with retinopathy‐positive CM . Overt DIC was present in 19 (19%), and was associated with a fatal outcome (odds ratio [OR] 3.068; 95% confidence interval [CI] 1.085–8.609; P = 0.035]. The levels of the three fibrin‐related markers and soluble thrombomodulin were higher in CM patients than in UM patients (all P < 0.001). The mean fibrin degradation product level was higher in fatal CM patients (71.3 ÎŒg mL−1 [95% CI 49.0–93.6]) than in non‐fatal CM patients (48.0 ÎŒg mL−1 [95% CI 37.7–58.2]; P = 0.032), but, in multivariate logistic regression, thrombomodulin was the only coagulation‐related marker that was independently associated with a fatal outcome (OR 1.084 for each ng mL−1 increase [95% CI 1.017–1.156]; P = 0.014). Despite these laboratory derangements, no child in the study had clinically evident bleeding or thrombosis. An overt DIC score and high thrombomodulin levels are associated with a fatal outcome in CM , but infrequently indicate a consumptive coagulopathy

    About ergodicity in the family of limacon billiards

    Get PDF
    By continuation from the hyperbolic limit of the cardioid billiard we show that there is an abundance of bifurcations in the family of limacon billiards. The statistics of these bifurcation shows that the size of the stable intervals decreases with approximately the same rate as their number increases with the period. In particular, we give numerical evidence that arbitrarily close to the cardioid there are elliptic islands due to orbits created in saddle node bifurcations. This shows explicitly that if in this one parameter family of maps ergodicity occurs for more than one parameter the set of these parameter values has a complicated structure.Comment: 17 pages, 9 figure

    Solitary coherent structures in viscoelastic shear flow: computation and mechanism

    Get PDF
    Starting from stationary bifurcations in Couette-Dean flow, we compute nontrivial stationary solutions in inertialess viscoelastic circular Couette flow. These solutions are strongly localized vortex pairs, exist at arbitrarily large wavelengths, and show hysteresis in the Weissenberg number, similar to experimentally observed ``diwhirl'' patterns. Based on the computed velocity and stress fields, we elucidate a heuristic, fully nonlinear mechanism for these flows. We propose that these localized, fully nonlinear structures comprise fundamental building blocks for complex spatiotemporal dynamics in the flow of elastic liquids.Comment: 5 pages text and 4 figures. Submitted to Physical Review Letter

    Solvent contribution to the stability of a physical gel characterized by quasi-elastic neutron scattering

    Full text link
    The dynamics of a physical gel, namely the Low Molecular Mass Organic Gelator {\textit Methyl-4,6-O-benzylidene-α\alpha -D-mannopyranoside (α\alpha-manno)} in water and toluene are probed by neutron scattering. Using high gelator concentrations, we were able to determine, on a timescale from a few ps to 1 ns, the number of solvent molecules that are immobilised by the rigid network formed by the gelators. We found that only few toluene molecules per gelator participate to the network which is formed by hydrogen bonding between the gelators' sugar moieties. In water, however, the interactions leading to the gel formations are weaker, involving dipolar, hydrophobic or π−π\pi-\pi interactions and hydrogen bonds are formed between the gelators and the surrounding water. Therefore, around 10 to 14 water molecules per gelator are immobilised by the presence of the network. This study shows that neutron scattering can give valuable information about the behaviour of solvent confined in a molecular gel.Comment: Langmuir (2015

    A non-parametric structural hybrid modeling approach for electricity prices

    Get PDF
    We develop a stochastic model of zonal/regional electricity prices, designed to reflect information in fuel forward curves and aggregated capacity and load as well as zonal or regional price spreads. We use a nonparametric model of the supply stack that captures heat rates and fuel prices for all generators in the market operator territory, combined with an adjustment term to approximate congestion and other zone-specific behavior. The approach requires minimal calibration effort, is readily adaptable to changing market conditions and regulations, and retains sufficient tractability for the purpose of forward price calibration. The model is illustrated for the spot and forward electricity prices of the PS zone in the PJM market, and the set of time-dependent risk premiums are inferred and analyzed

    Short range ballistic motion in fluid lipid bilayers studied by quasi-elastic neutron scattering

    Get PDF
    Diffusion is the primary mechanism for the movement of lipids and proteins in a biological membrane. It is important in the formation of various macromolecular structures, such as lipid rafts. The commonly accepted theory for diffusion in membranes suggests that the molecules undergo continuous Brownian diffusion at long length scales, with a &quot;rattling-in-the-cage&quot; motion at short length scales, as shown in figure 1. However, this model has recently been challenged by experimental and simulation results. It has been observed that lipids move in loosely bound clusters rather than as individual molecules [1,2], and that there is a flow-like component to long range lipid diffusion [3]. Ballistic and sub-diffusive regimes have been observed in molecular dynamics simulations [4,5]. Diffusion is mainly studied by two experimental methods: fluorescence techniques and incoherent quasi-elastic neutron scattering. The two techniques access distinctly different length scales, resulting in a &quot;blind spot&quot; at mesoscopic distances. We note that the diffusion coefficients measured by these two techniques often differ by as much as orders of magnitude. The mechanism for diffusion, therefore, seems to depend on the length scale at which it is observed. The blind spot in the mesoscopic range will hopefully be closed in the future using high energy resolution lamor precession techniques performed with spin-echo spectrometers. To extend the window of length scales and investigate the motion of lipid molecules at very short distances, we used the unique capabilities of the IN13 thermal backscattering spectrometer. IN13 provides access to an exceptionally large Q range, covering length scales from 1.3 to 31 Å (0.2 Å -1 &lt; Q &lt; 5 Å -1 ). We used IN13 to study lipid diffusion at length scales smaller than a typical lipid-lipid distance in fluid bilayers. The aim of the experiment was to prove the validity of the Brownian diffusion model down to very small length scales. We chose a stacked model membrane system (DMPC) for this study and analysed the quasi-elastic neutron scattering response of the lipid molecules. Membranes were prepared as solid-supported, multi-lamellar membrane stacks on silicon wafers. Protonated lipids were hydrated by heavy water, so that the experiments were sensitive to the incoherent signal of the lipids. To increase the scattering signal, several wafers with thousands of highly oriented membranes were stacked. The membranes were studied in their physiologically relevant fluid state, at high temperature (T=30 °C) and full hydration. The width of the quasi-elastic energy response (full width at half maximum, FWHM) is shown in figure 2. If a particle diffuses via random Brownian motion, the time evolution of its displacement can be written as = 2Dt, and the quasi-elastic energy broadening has a Lorentzian shape, which demonstrate
    • 

    corecore