16,302 research outputs found
Asymptotic solutions of glass temperature profiles during steady optical fibre drawing
In this paper we derive realistic simplified models for the high-speed drawing of glass optical fibres via the downdraw method, that capture the fluid dynamics and heat transport in the fibre via conduction, convection and radiative heating. We exploit the small aspect ratio of the fibre and the relative orders of magnitude of the dimensionless parameters that characterize the heat transfer to reduce the problem to one- or two-dimensional systems via asymptotic analysis. The resulting equations may be readily solved numerically and in many cases admit exact analytic solutions. The systematic asymptotic breakdown presented is used to elucidate the relative importance of furnace temperature profile, convection, surface radiation and conduction in each portion of the furnace and the role of each in controlling the glass temperature.\ud
\ud
The models derived predict many of the qualitative features observed in the real industrial process, such as the glass temperature profile within the furnace and the sharp transition in fibre thickness. The models thus offer a desirable route to quick scenario testing, providing valuable practical information into the dependencies of the solution on the parameters and the dominant heat-transport mechanism
Partitioning Complexity in Air Traffic Management Task
Cognitive complexity is a term that appears frequently in air traffic control (ATC) research literature, yet there is little principled investigation of the potential sources of cognitive complexity. Three distinctly different sources of
cognitive complexity are proposed which are environmental, organizational, and display. Two experiments were conducted to explore whether or not these proposed components of complexity could be effectively partitioned,
measured, and compared. The findings demonstrate that sources of complexity can be decomposed and measured and furthermore, the use of color in displays, a display design intervention meant to reduce environmental complexity, can actually contribute to it.This research was sponsored by the Civil Aerospace Medical Institute
Elemental and isotopic fractionation in 3He-rich solar energetic particle events
Using data from the Solar Isotope Spectrometer (SIS) on the Advanced Composition Explorer (ACE) mission, heavy ion composition measurements have been made in 26^3He-rich solar energetic particle (SEP) events that occurred between 1998 and 2004. Relative abundances of 13 elements from C through Ni have been investigated, as have the isotopic compositions of the elements Ne and Mg. We find a general tendency for the abundances to follow trends similar to those found in gradual SEP events, in which fractionation can be represented in the form of a power-law in Q/M. However several deviations from this pattern are noted that may provide useful diagnostics of the acceleration process occurring in solar flares
Heavy-ion Fractionation in the Impulsive Solar Energetic Particle Event of 2002 August 20: Elements, Isotopes, and Inferred Charge States
Measurements of heavy-ion elemental and isotopic composition in the energy range ~12-60 MeV nucleon^(–1) are reported from the Advanced Composition Explorer/Solar Isotope Spectrometer (ACE/SIS) instrument for the solar energetic particle (SEP) event of 2002 August 20. We investigate fractionation in this particularly intense impulsive event by examining the enhancements of elemental and isotopic abundance ratios relative to corresponding values in the solar wind. The elemental enhancement pattern is similar to those in other impulsive events detected by ACE/SIS and in compilations of average impulsive-event composition. For individual elements, the abundance of a heavy isotope (mass M_2) is enhanced relative to that of a lighter isotope (M_1) by a factor ~(M_(1)/M_2)^α with α ≃ 15. Previous studies have reported elemental abundance enhancements organized as a power law in Q/M, the ratio of estimated ionic charge to mass in the material being fractionated. We consider the possibility that a fractionation law of this form could be responsible for the isotopic fractionation as a power law in the mass ratio and then explore the implications it would have for the ionic charge states in the source material. Assuming that carbon is fully stripped (Q_C = 6), we infer mean values of the ionic charge during the fractionation process, Q_Z , for a variety of elements with atomic numbers 7 ≤ Z ≤ 28. We find that Q_(Fe) ≃ 21-22, comparable to the highest observed values that have been reported at lower energies in impulsive SEP events from direct measurements near 1 AU. The inferred charge states as a function of Z are characterized by several step increases in the number of attached electrons, Z – Q_Z . We discuss how this step structure, together with the known masses of the elements, might account for a variety of features in the observed pattern of elemental abundance enhancements. We also briefly consider alternative fractionation laws and the relationship between the charge states we infer in the source material and those derived from in situ observations
Dynamics of Atom-Field Entanglement from Exact Solutions: Towards Strong Coupling and Non-Markovian Regimes
We examine the dynamics of bipartite entanglement between a two-level atom
and the electromagnetic field. We treat the Jaynes-Cummings model with a single
field mode and examine in detail the exact time evolution of entanglement,
including cases where the atomic state is initially mixed and the atomic
transition is detuned from resonance. We then explore the effects of other
nearby modes by calculating the exact time evolution of entanglement in more
complex systems with two, three, and five field modes. For these cases we can
obtain exact solutions which include the strong coupling regimes. Finally, we
consider the entanglement of a two-level atom with the infinite collection of
modes present in the intracavity field of a Fabre-Perot cavity. In contrast to
the usual treatment of atom-field interactions with a continuum of modes using
the Born-Markov approximation, our treatment in all cases describes the full
non-Markovian dynamics of the atomic subsystem. Only when an analytic
expression for the infinite mode case is desired do we need to make a weak
coupling assumption which at long times approximates Markovian dynamics.Comment: 12 pages, 5 figures; minor changes in grammar, wording, and
formatting. One unnecessary figure removed. Figure number revised (no longer
counts subfigures separately
Addressing student models of energy loss in quantum tunnelling
We report on a multi-year, multi-institution study to investigate student
reasoning about energy in the context of quantum tunnelling. We use ungraded
surveys, graded examination questions, individual clinical interviews, and
multiple-choice exams to build a picture of the types of responses that
students typically give. We find that two descriptions of tunnelling through a
square barrier are particularly common. Students often state that tunnelling
particles lose energy while tunnelling. When sketching wave functions, students
also show a shift in the axis of oscillation, as if the height of the axis of
oscillation indicated the energy of the particle. We find inconsistencies
between students' conceptual, mathematical, and graphical models of quantum
tunnelling. As part of a curriculum in quantum physics, we have developed
instructional materials to help students develop a more robust and less
inconsistent picture of tunnelling, and present data suggesting that we have
succeeded in doing so.Comment: Originally submitted to the European Journal of Physics on 2005 Feb
10. Pages: 14. References: 11. Figures: 9. Tables: 1. Resubmitted May 18 with
revisions that include an appendix with the curriculum materials discussed in
the paper (4 page small group UW-style tutorial
An Analysis of Heterogeneity in Futuristic Unmanned Vehicle Systems
Recent studies have shown that with appropriate operator decision support and with enough automation aboard
unmanned vehicles, inverting the multiple operators to single-vehicle control paradigm is possible. These studies,
however, have generally focused on homogeneous teams of vehicles, and have not completely addressed either the
manifestation of heterogeneity in vehicle teams, or the effects of heterogeneity on operator capacity. An important
implication of heterogeneity in unmanned vehicle teams is an increase in the diversity of possible team
configurations available for each operator, as well as an increase in the diversity of possible attention allocation
schemes that can be utilized by operators. To this end, this paper introduces a resource allocation framework that
defines the strategies and processes that lead to alternate team configurations. The framework also highlights the
sub-components of operator attention allocation schemes that can impact overall performance when supervising
heterogeneous unmanned vehicle teams. A subsequent discrete event simulation model of a single operator
supervising multiple heterogeneous vehicles and tasks explores operator performance under different heterogeneous
team compositions and varying attention allocation strategies. Results from the discrete event simulation model
show that the change in performance when switching from a homogeneous team to a heterogeneous one is highly
dependent on the change in operator utilization. Heterogeneous teams that result in lower operator utilization can
lead to improved performance under certain operator strategies.Prepared for Charles River Analytic
Audio Decision Support for Supervisory Control of Unmanned Vehicles : Literature Review
Purpose of this literature review:
To survey scholarly articles, books and other sources (dissertations, conference
proceedings) relevant to the use of the audio
supervisory control of unmanned vehicles.Prepared for Charles River Analytic
One Work Analysis, Two Domains: A Display Information Requirements Case Study
d observations, among other techniques. Given the time and resources required, we examine how to generalize a work domain analysis technique, namely the hybrid Cognitive Task Analysis (hCTA) method across two domains in order to generate a common set of display information requirements. The two domains of interest are field workers troubleshooting low voltage distribution networks and telecommunication problems. Results show that there is a high degree of similarity between the two domains due to their service call nature, particularly in tasking and decision-making. While the primary differences were due to communication protocols and equipment requirements, the basic overall mission goals, functions, phases of operation, decision processes, and situation requirements were very similar. A final design for both domains is proposed based on the joint requirements
A novel technique to infer ionic charge states of solar energetic particles
In some large solar energetic particle (SEP) events, the intensities of higher energy SEPs decay more rapidly than at lower energies. This energy dependence varies with particle species, as would be expected if the decay timescale depended on a rigidity-dependent diffusion mean free path. By comparing the decay timescales of carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, and iron, mean charge states are inferred for these (and other) elements in three SEP events between 1997 and 2002 at energies between 10 and 200 MeV nucleon−1. In a fourth event, upper limits for the charge states are inferred. The charge states of many different particle species are all consistent with a single source temperature; in two events in 1997 and 2002, the best-fit temperature is much higher than that of the corona, which could imply a contribution from solar flare material. However, comparison with lower energy iron charge states for the 1997 event implies that the observed high-energy charge state could also be understood as the result of stripping during shock acceleration in the corona
- …