3,394 research outputs found
Exciton trapping in magnetic wire structures
The lateral magnetic confinement of quasi two-dimensional excitons into wire
like structures is studied. Spin effects are take into account and two
different magnetic field profiles are considered, which experimentally can be
created by the deposition of a ferromagnetic stripe on a semiconductor quantum
well with magnetization parallel or perpendicular to the grown direction of the
well. We find that it is possible to confine excitons into one-dimensional (1D)
traps. We show that the dependence of the confinement energy on the exciton
wave vector, which is related to its free direction of motion along the wire
direction, is very small. Through the application of a background magnetic
field it is possible to move the position of the trapping region towards the
edge of the ferromagnetic stripe or even underneath the stripe. The exact
position of this 1D exciton channel depends on the strength of the background
magnetic field and on the magnetic polarisation direction of the ferromagnetic
film.Comment: 10 pages, 7 figures, to be published in J. Phys: Condens. Matte
Classical double-layer atoms: artificial molecules
The groundstate configuration and the eigenmodes of two parallel
two-dimensional classical atoms are obtained as function of the inter-atomic
distance (d). The classical particles are confined by identical harmonic wells
and repel each other through a Coulomb potential. As function of d we find
several structural transitions which are of first or second order. For first
(second) order transitions the first (second) derivative of the energy with
respect to d is discontinuous, the radial position of the particles changes
discontinuously (continuously) and the frequency of the eigenmodes exhibit a
jump (one mode becomes soft, i.e. its frequency becomes zero).Comment: 4 pages, RevTex, 5 ps figures, to appear in Phys.Rev.Let
"Better Safe than Sorry" - Individual Risk-free Pension Schemes in the European Union - Macroeconomic Benefits, the Mobile Working Citizen's Perspective and Why Nots
Variations between the diverse pension systems in the member states of the European Union hamper labour market mobility, across country borders but also within the countries of the European Union. From a macroeconomic perspective, and in the light of demographic pressure, this paper argues that allowing individual instead of collective pension building would greatly improve labour market flexibility and thus enhance the functioning of the monetary union. I argue that working citizens would benefit, for three reasons, from pension saving in a risk-free savings account. First, citizens would have a clear picture of the accumulation of their own pension savings throughout their working life. Second, they would pay hardly any extra costs and, third, once retired they would not be subject to the whims of government or other pension fund managers. This paper investigates the feasibility of individual pension building under various parameter settings by calculating the pension saved during a working life and the pension dis-saved after retirement. The findings show that there are no reasons why the European Union and individual member states should not allow individual risk-free pension savings accounts. This would have macroeconomic benefits and provide a solid pension provision that can enhance mobility, instead of engaging workers in different mandatory collective pension schemes that exist around in the European Union
Hysteresis and re-entrant melting of a self-organized system of classical particles confined in a parabolic trap
A self-organized system composed of classical particles confined in a
two-dimensional parabolic trap and interacting through a potential with a
short-range attractive part and long-range repulsive part is studied as
function of temperature. The influence of the competition between the
short-range attractive part of the inter-particle potential and its long-range
repulsive part on the melting temperature is studied. Different behaviors of
the melting temperature are found depending on the screening length ()
and the strength () of the attractive part of the inter-particle potential.
A re-entrant behavior and a thermal induced phase transition is observed in a
small region of ()-space. A structural hysteresis effect is observed
as a function of temperature and physically understood as due to the presence
of a potential barrier between different configurations of the system.Comment: 8 pages, 6 figure
Hysteresis in mesoscopic superconducting disks: the Bean-Livingston barrier
The magnetization behavior of mesoscopic superconducting disks can show
hysteretic behavior which we explain by using the Ginzburg-Landau (GL) theory
and properly taking into account the de-magnetization effects due to
geometrical form factors. In large disks the Bean-Livingston surface barrier is
responsible for the hysteresis. While in small disks a volume barrier is
responsible for this hysteresis. It is shown that although the sample
magnetization is diamagnetic (negative), the measured magnetization can be
positive at certain fields as observed experimentally, which is a consequence
of the de-magnetization effects and the experimental set up.Comment: Latex file, 4 ps file
Modeling of chemical processes in the low pressure capacitive RF discharges in a mixture of Ar/C2H2
We study the properties of a capacitive 13.56 MHz discharge properties with a
mixture of Ar/C2H2 taking into account the plasmochemistry and growth of heavy
hydrocarbons. A hybrid model was developed to combine the kinetic description
for electron motion and the fluid approach for negative and positive ions
transport and plasmochemical processes. A significant change of plasma
parameters related to injection of 5.8% portion of acetylene in argon was
observed and analyzed. We found that the electronegativity of the mixture is
about 30%. The densities of negatively and positively charged heavy
hydrocarbons are sufficiently large to be precursors for the formation of
nanoparticles in the discharge volume.Comment: 11 pages, 14 figure
Quantum and semiclassical study of magnetic anti-dots
We study the energy level structure of two-dimensional charged particles in
inhomogeneous magnetic fields. In particular, for magnetic anti-dots the
magnetic field is zero inside the dot and constant outside. Such a device can
be fabricated with present-day technology. We present detailed semiclassical
studies of such magnetic anti-dot systems and provide a comparison with exact
quantum calculations. In the semiclassical approach we apply the Berry-Tabor
formula for the density of states and the Borh-Sommerfeld quantization rules.
In both cases we found good agreement with the exact spectrum in the weak
magnetic field limit. The energy spectrum for a given missing flux quantum is
classified in six possible classes of orbits and summarized in a so-called
phase diagram. We also investigate the current flow patterns of different
quantum states and show the clear correspondence with classical trajectories.Comment: 14 pages, 13 figure
Snake orbits and related magnetic edge states
We study the electron motion near magnetic field steps at which the strength
and/or sign of the magnetic field changes. The energy spectrum for such systems
is found and the electron states (bound and scattered) are compared with their
corresponding classical paths. Several classical properties as the velocity
parallel to the edge, the oscillation frequency perpendicular to the edge and
the extent of the states are compared with their quantum mechanical
counterpart. A class of magnetic edge states is found which do not have a
classical counterpart.Comment: 8 pages, 10 figure
Classical artificial two-dimensional atoms: the Thomson model
The ring configurations for classical two-dimensional atoms are calculated
within the Thomson model and compared with the results from `exact' numerical
simulations. The influence of the functional form of the confinement potential
and the repulsive interaction potential between the particles on the
configurations is investigated. We also give exact results on those eigenmodes
of the system whose frequency does not depend on the number of particles in the
system.Comment: 9 pages, RevTeX, 4 figure
Magnetic field dependence of the exciton energy in a quantum disk
The groundstate energy and binding energy of an exciton, confined in a^M
quantum disk, are calculated as a function of an external magnetic field. The
confinement potential is a hard wall of finite height. The diamagnetic shift is
investigated for magnetic fields up to 40. Our results are applied to
self-assembled quantum dots and very good
agreement with experiments is obtained. Furthermore, we investigated the
influence of the dot size on the diamagnetic shift by changing the disk radius.
The exciton excited states are found as a function of the magnetic field. The
relative angular momentum is not a quantum number and changes with the magnetic
field strength.Comment: 10 pages, 17 figure
- …