17 research outputs found

    Role of hemoclips in the management of acute bleeding from a gastric stromal tumor: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Though gastrointestinal stromal tumors (GISTs) frequently present with gastrointestinal bleeding, the guidelines for the management and control of bleeding are unclear especially in patients who are not appropriate for surgical resection.</p> <p>Case presentation</p> <p>We report a case of gastric GIST in an elderly patient who presented with bleeding. Homeostasis was achieved initially with the endoscopic placement of a hemoclip followed by treatment with the tyrosine kinase inhibitor, imatinib.</p> <p>Conclusion</p> <p>The management of bleeding GISTs in the elderly pose a challenging task to the gastroenterologist and treatment strategies should be tailored to the expertise of the endoscopist, surgeon and other supportive staff.</p

    Cell-based tissue-engineered allogeneic implant for cartilage repair

    Full text link
    The potential for using of allogeneic cartilage chips, transplanted in a biologic polymer with articular chondrocytes, as a tool for articular cartilage repair was studied. Small lyophilized articular cartilage chips were mixed with a cell/fibrinogen solution and thrombin to obtain implantable constructs made of fibrin glue, chondrocytes, and cartilage chips. Specimens were implanted in the subcutaneous tissue on the backs of nude mice (experimental group A). Three groups of controls (groups B, C, and D) were also prepared. Group B consisted of fibrin glue and cartilage chips without chondrocytes. Group C consisted of fibrin glue and chondrocytes without cartilage chips, and group D was composed solely of fibrin glue. All samples were carefully weighed before implantation in the mice. The constructs were harvested from the animals at 6, 9, and 12 weeks, examined grossly, and weighed. The samples were then processed and stained with hematoxylin and eosin for histological examination. Gross evaluation and weight analysis of the constructs at the time of retrieval showed retention of the original mass in the samples made of fibrin glue, chondrocytes, and cartilage chips (group A) and demonstrated a cartilaginous consistency upon probing. Specimens from constructs of fibrin glue and cartilage chips without chondrocytes (control group B) retained most of their volume, but were statistically lighter than specimens from group A and were much softer and more pliable than those in group A. Samples of specimens from constructs of fibrin glue and chondrocytes (groups C) and fibrin glue alone (group D) both showed a substantial reduction of their original masses over the experimental time periods when compared to the samples in groups A and B, although specimens from group C demonstrated new cartilage matrix formation. Histological analysis of specimens in experimental group A demonstrated the presence of cartilage chips surrounded by newly formed cartilaginous matrix, while specimens of control group B showed only fibrotic tissue surrounding the devitalized cartilage pieces. Cartilaginous matrix was also observed in control group C, in which cartilage chips were absent, whereas only fibrin glue debris was observed in control group D. This study demonstrated that a composite of fibrin glue and devitalized cartilage can serve as a scaffold for chondrocyte transplantation, preserve the original phenotype of the chondrocytes, and maintain the original mass of the implant. This may represent a valid option for addressing the problem of articular cartilage repair

    An in vitro tissue engineered model for osteochondral repair

    Full text link
    One of the main topics of regenerative medicine and tissue engineering is to address the problem of lesions involving articular cartilage. In fact, these lesions do not heal spontaneously and often lead to osteoarthritis, which causes chronic pain and worsens quality of life. Moreover, the only available treatment for osteoarthritis is symptomatic therapy and prosthetic replacement, with far from satisfactory results. A more conservative approach that restores the articular surface and function with a biologic tissue is desirable. Several strategies for regenerating articular cartilage have been proposed and applied in clinical practice but a gold standard has not yet been identified. Biphasic composites are the latest products of tissue engineering applied to articular cartilage and they seem to permit a more efficient integration of the engineered neo-tissue with the host. We present an in vitro tissue engineered model for osteochondral repair based on a composite of chondrocytes-fibrin glue gel and a calciumphosphate scaffold. This composite showed a gross integration of the two components and a cartilage-like quality of the newly formed matrix. Further studies are planned to quantify the adherence between the scaffold and the cellular fibrin glue
    corecore