6 research outputs found

    Functional comparison of acoustic admittance measurements with a CMOS-compatible p-v microprobe and a reference one

    No full text
    Recent developments in MEMS technology made available a new class of thermo-resistive sensors to be used as functional devices for acoustic particle velocity, v, measurements (Bruschi and Piotto, IEEE Sensors Proceedings 1405–1408, 2011). A very interesting feature of this new generation of v-sensors—distinguishing them from the Microflown® ones (de Bree et al., Sens Actuators A Phys 54:552–557, 1996)—is their compatibility with standard CMOS industrial processes, so allowing to integrate in the same chip both the sensors and read-out electronic circuits. This added flexibility of v-sensors, combined with miniature or MEMS microphones, allows of setting up pressure–velocity (p–v) microprobes for specific applications, in particular when the reduction of production costs is decisive for marketing strategies. In many applications, in fact, carefully designed functional devices can be safely used, without prejudice to the reliability and the robustness of the required measurement process. In other words, the required measurement precision can be achieved despite the low signal-to-noise ratio or limited band frequency response of the used p–v microprobes. This article shows a first comparison between the two kinds of sensor

    Calibrazione per confronto delle sonde pressione-velocitĂ  (p-v): impostazione del problema

    No full text
    L’estensione del metodo di calibrazione per confronto alle sonde intensimetriche p-v è un’esigenza sempre più sentita soprattutto con la recentissima realizzazione di prototi-pi di velocimetri acustici basati su tecnologia MEMS, CMOS compatibile [1,2]. È chia-ro, infatti, che lo sviluppo di tecniche intensimetriche che utilizzano questo tipo di mi-crosonde low-cost sarebbe grandemente facilitato dalla possibilità di calibrare “in cam-po” questo tipo di strumentazione. Ciò, senza dover ricorrere a ingombranti dispositivi in grado di realizzare − in base a qualche modello teorico (onde piane progressive o sta-zionarie, onde sferiche etc.) − campi sonori di impedenza nota a priori, che possano ser-vire da riferimento per il processo di calibrazione. Come nel caso del metodo di calibra-zione per confronto dei microfoni a pressione, è tuttavia necessario anche nel caso delle sonde p-v, avere la disponibilità di una sonda pre-calibrata i cui segnali possano servire come riferimento per la misura di confronto. Nel caso di sonde intensimetriche, tuttavia, è fondamentale assicurarsi che le condizioni al contorno realizzate per l’acquisizione dei segnali p-v da confrontare, siano idealmente le stesse. Questa memoria illustra brevemente la metodologia e un possibile setup sperimenta-le predisposto nell’ambito del progetto Sogliano Industrial High Technology (SIHT) per affrontare questa problematica

    Application of acoustic horns for the amplification of a pv probe velocimetric signal

    No full text
    The present paper shows the comparison between experimental data and simulated results for the amplification factor of acoustic horns. The experimental setup was based on a sound insulation enclosure and a Microflown p-v probe, while COMSOL 4.4 software package has been used for numerical simulation. Apart from systematic errors, due to the mismatch between the simulated and experimental sound fields, the behavior of the obtained results shows a good agreement with the COMSOL modeled ones, so confirming the effectiveness of the horn device as a natural amplifier of the velocity signal

    Design and Fabrication of a Compact p-v Probe for Acoustic Impedance Measurement

    No full text
    A novel p–v probe for the measurement of the acoustic impedance is proposed. The device is fabricated assembling a micromachined acoustic particle velocity sensor, a commercial microphone, and an electronic read-out interface. The velocity sensor consists of two integrated polysilicon heaters placed over suspended dielectric membranes. The sensor has been designed with a commercial CMOS process and fabricated using a simple post-processing technique. The electronic interface is based on a Wheatstone bridge and a low noise instrumentation amplifier. Preliminary tests confirm the functionality of the proposed probe
    corecore