448 research outputs found

    Mechanisms in Adaptive Feedback Control: Photoisomerization in a Liquid

    Full text link
    The underlying mechanism for Adaptive Feedback Control in the experimental photoisomerization of NK88 in methanol is exposed theoretically. With given laboratory limitations on laser output, the complicated electric fields are shown to achieve their targets in qualitatively simple ways. Further, control over the cis population without laser limitations reveals an incoherent pump-dump scenario as the optimal isomerization strategy. In neither case are there substantial contributions from quantum multiple-path interference or from nuclear wavepacket coherence. Environmentally induced decoherence is shown to justify the use of a simplified theoretical model.Comment: 10 pages, 3 figures, to be published in Phys. Rev. Let

    Robust ultrafast currents in molecular wires through Stark shifts

    Full text link
    A novel way to induce ultrafast currents in molecular wires using two incident laser frequencies, ω\omega and 2ω2\omega, is demonstrated. The mechanism relies on Stark shifts, instead of photon absorption, to transfer population to the excited states and exploits the temporal profile of the field to generate phase controllable transport. Calculations in a \emph{trans}-polyacetylene oligomer coupled to metallic leads indicate that the mechanism is highly efficient and robust to ultrafast electronic dephasing processes induced by vibronic couplings.Comment: 4 pages, 2 figures, accepted to Physical Review Letter

    Generic Quantum Ratchet Accelerator with Full Classical Chaos

    Get PDF
    A simple model of quantum ratchet transport that can generate unbounded linear acceleration of the quantum ratchet current is proposed, with the underlying classical dynamics fully chaotic. The results demonstrate that generic acceleration of quantum ratchet transport can occur with any type of classical phase space structure. The quantum ratchet transport with full classical chaos is also shown to be very robust to noise due to the large linear acceleration afforded by the quantum dynamics. One possible experiment allowing observation of these predictions is suggested.Comment: 4 pages, 4 figure

    Overlapping Resonances Interference-induced Transparency: The S0S2/S1S_0 \to S_2/S_1 Photoexcitation Spectrum of Pyrazine

    Full text link
    The phenomenon of "overlapping resonances interference-induced transparency" (ORIT) is introduced and studied in detail for the S0S2/S1S_0 \to S_2/S_1 photoexcitation of cold pyrazine (C4_4H4_4N2_2). In ORIT a molecule becomes transparent at specific wavelengths due to interferences between envelopes of spectral lines displaying overlapping resonances. An example is the S2S1S_2\leftrightarrow S_1 internal conversion in pyrazine where destructive interference between overlapping resonances causes the S0S2/S1S_0 \to S_2/S_1 light absorption to disappear at certain wavelengths. ORIT may be of practical importance in multi-component mixtures where it would allow for the selective excitation of some molecules in preference to others. Interference induced cross section enhancement is also shown.Comment: 13 pages, 7 figure

    Classical-Wigner Phase Space Approximation to Cumulative Matrix Elements in Coherent Control

    Full text link
    The classical limit of the Wigner-Weyl representation is used to approximate products of bound-continuum matrix elements that are fundamental to many coherent control computations. The range of utility of the method is quantified through an examination of model problems, single-channel Na_2 dissociation and multi-arrangement channel photodissociation of CH_2IBr. Very good agreement with the exact quantum results is found for a wide range of system parameters.Comment: 17 pages, 12 figures, to appear in Journal of Chemical Physic

    Laser-induced currents along molecular wire junctions

    Full text link
    The treatment of the previous paper is extended to molecular wires. Specifically, the effect of electron-vibrational interactions on the electronic transport induced by femtosecond ω+2ω\omega+2\omega laser fields along unbiased molecular nanojunctions is investigated. For this, the photoinduced vibronic dynamics of trans-polyacetylene oligomers coupled to macroscopic metallic leads is followed in a mean-field mixed quantum-classical approximation. A reduced description of the dynamics is obtained by introducing projective lead-molecule couplings and deriving an effective Schr\"odinger equation satisfied by the orbitals in the molecular region. Two possible rectification mechanisms are identified and investigated. The first one relies on near-resonance photon-absorption and is shown to be fragile to the ultrafast electronic decoherence processes introduced by the wire's vibrations. The second one employs the dynamic Stark effect and is demonstrated to be highly efficient and robust to electron-vibrational interactions.Comment: 14 pages, 10 figures. Accepted in J. Chem. Phy

    Symmetric Rotating Wave Approximation for the Generalized Single-Mode Spin-Boson System

    Full text link
    The single-mode spin-boson model exhibits behavior not included in the rotating wave approximation (RWA) in the ultra and deep-strong coupling regimes, where counter-rotating contributions become important. We introduce a symmetric rotating wave approximation that treats rotating and counter-rotating terms equally, preserves the invariances of the Hamiltonian with respect to its parameters, and reproduces several qualitative features of the spin-boson spectrum not present in the original rotating wave approximation both off-resonance and at deep strong coupling. The symmetric rotating wave approximation allows for the treatment of certain ultra and deep-strong coupling regimes with similar accuracy and mathematical simplicity as does the RWA in the weak coupling regime. Additionally, we symmetrize the generalized form of the rotating wave approximation to obtain the same qualitative correspondence with the addition of improved quantitative agreement with the exact numerical results. The method is readily extended to higher accuracy if needed. Finally, we introduce the two-photon parity operator for the two-photon Rabi Hamiltonian and obtain its generalized symmetric rotating wave approximation. The existence of this operator reveals a parity symmetry similar to that in the Rabi Hamiltonian as well as another symmetry that is unique to the two-photon case, providing insight into the mathematical structure of the two-photon spectrum, significantly simplifying the numerics, and revealing some interesting dynamical properties.Comment: 11 pages, 5 figure

    Cold Atomic Collisions: Coherent Control of Penning and Associative Ionization

    Get PDF
    Coherent Control techniques are computationally applied to cold (1mK < T < 1 K) and ultracold (T < 1 microK) Ne*(3s,3P2) + Ar(1S0) collisions. We show that by using various initial superpositions of the Ne*(3s,3P2) M = {-2,-1,0,1,2} Zeeman sub-levels it is possible to reduce the Penning Ionization (PI) and Associative Ionization (AI) cross sections by as much as four orders of magnitude. It is also possible to drastically change the ratio of these two processes. The results are based on combining, within the "Rotating Atom Approximation", empirical and ab-initio ionization-widths.Comment: 4 pages, 2 tables, 2 figure

    A Selective Advantage for Conservative Viruses

    Full text link
    In this letter we study the full semi-conservative treatment of a model for the co-evolution of a virus and an adaptive immune system. Regions of viability are calculated for both conservatively and semi-conservatively replicating viruses interacting with a realistic semi-conservatively replicating immune system. The conservative virus is found to have a selective advantage in the form of an ability to survive in regions with a wider range of mutation rates than its semi-conservative counterpart. This may help explain the existence of a rich range of viruses with conservatively replicating genomes, a trait which is found nowhere else in nature.Comment: 4 pages, 2 figure

    Advances in decoherence control

    Full text link
    I address the current status of dynamical decoupling techniques in terms of required control resources and feasibility. Based on recent advances in both improving the theoretical design and assessing the control performance for specific noise models, I argue that significant progress may still be possible on the road of implementing decoupling under realistic constraints.Comment: 14 pages, 3 encapsulated eps figures. To appear in Journal of Modern Optics, Special Proceedings Volume of the XXXIV Winter Colloquium on the Physics of Quantum Electronics, Snowbird, Jan 200
    corecore