2,685 research outputs found
Is classical reality completely deterministic?
The concept of determinism for a classical system is interpreted as the
requirement that the solution to the Cauchy problem for the equations of motion
governing this system be unique. This requirement is generally assumed to hold
for all autonomous classical systems. We give counterexamples of this view. Our
analysis of classical electrodynamics in a world with one temporal and one
spatial dimension shows that the solution to the Cauchy problem with the
initial conditions of a particular type is not unique. Therefore, random
behavior of closed classical systems is indeed possible. This finding provides
a qualitative explanation of how classical strings can split. We propose a
modified path integral formulation of classical mechanics to include
indeterministic systems.Comment: Replace the paper with a revised versio
A case of AML characterized by a novel t(4;15)(q31;q22) translocation that confers a growth-stimulatory response to retinoid-based therapy
Here we report the case of a 30-year-old woman with relapsed acute myeloid leukemia (AML) who was treated with all-transretinoic acid (ATRA) as part of investigational therapy (NCT02273102). The patient died from rapid disease progression following eight days of continuous treatment with ATRA. Karyotype analysis and RNA-Seq revealed the presence of a novel t(4;15)(q31;q22) reciprocal translocation involving theTMEM154andRASGRF1genes. Analysis of primary cells from the patient revealed the expression ofTMEM154-RASGRF1mRNA and the resulting fusion protein, but no expression of the reciprocalRASGRF1-TMEM154fusion. Consistent with the response of the patient to ATRA therapy, we observed a rapid proliferation of t(4;15) primary cells following ATRA treatment ex vivo. Preliminary characterization of the retinoid response of t(4;15) AML revealed that in stark contrast to non-t(4;15) AML, these cells proliferate in response to specific agonists of RARα and RARγ. Furthermore, we observed an increase in the levels of nuclear RARγ upon ATRA treatment. In summary, the identification of the novel t(4;15)(q31;q22) reciprocal translocation opens new avenues in the study of retinoid resistance and provides potential for a new biomarker for therapy of AML
The Specific Heat of Normal, Degenerate Quark Matter: Non-Fermi Liquid Corrections
In normal degenerate quark matter, the exchange of dynamically screened
transverse gluons introduces infrared divergences in the quark self-energies
that lead to the breakdown of the Fermi liquid description. If the core of
neutron stars are composed of quark matter with a normal component, cooling by
direct quark Urca processes may be modified by non-Fermi liquid corrections. We
find that while the quasiparticle density of states is finite and non-zero at
the Fermi surface, its frequency derivative diverges and results in non-Fermi
liquid corrections to the specific heat of the normal, degenerate component of
quark matter. We study these non-perturbative non-Fermi liquid corrections to
the specific heat and the temperature dependence of the chemical potential and
show that these lead to a reduction of the specific heat.Comment: new discussion, updated references, accepted in PR
Recommended from our members
The impact of histopathology and NAB2-STAT6 fusion subtype in classification and grading of meningeal solitary fibrous tumor/hemangiopericytoma.
Meningeal solitary fibrous tumor (SFT)/hemangiopericytoma (HPC) is a rare tumor with propensity for recurrence and metastasis. Although multiple classification schemes have been proposed, optimal risk stratification remains unclear, and the prognostic impact of fusion status is uncertain. We compared the 2016 WHO CNS tumor grading scheme (CNS-G), a three-tier system based on histopathologic phenotype and mitotic count, to the 2013 WHO soft-tissue counterpart (ST-G), a two-tier system based on mitotic count alone, in a cohort of 133 patients [59 female, 74 male; mean age 54 years (range 20-87)] with meningeal SFT/HPC. Tumors were pathologically confirmed through review of the first tumor resection (n = 97), local recurrence (n = 35), or distant metastasis (n = 1). A STAT6 immunostain showed nuclear expression in 132 cases. NAB2-STAT6 fusion was detected in 99 of 111 successfully tested tumors (89%) including the single STAT6 immunonegative tumor. Tumors were classified by CNS-G as grade 1 (n = 43), 2 (n = 41), or 3 (n = 49), and by ST-G as SFT (n = 84) or malignant SFT (n = 49). Necrosis was present in 16 cases (12%). On follow-up, 42 patients had at least one subsequent recurrence or metastasis (7 metastasis only, 33 recurrence only, 2 patients had both). Twenty-nine patients died. On univariate analysis, necrosis (p = 0.002), CNS-G (p = 0.01), and ST-G (p = 0.004) were associated with recurrence-free (RFS) but not overall survival (OS). NAB2-STAT6 fusion type was not significantly associated with RFS or OS, but was associated with phenotype. A modified ST-G incorporating necrosis showed higher correlation with RFS (p = 0.0006) and remained significant (p = 0.02) when considering only the primary tumors. From our data, mitotic rate and necrosis appear to stratify this family of tumors most accurately and could be incorporated in a future grading scheme
Implicit and explicit body representations
Several forms of perception require that sensory information be referenced to representations of the size and shape of the body. This requirement is especially acute in somatosensation in which the main receptor surface (i.e., the skin) is itself coextensive with the body. In this paper I will review recent research investigating the body representations underlying somatosensory information processing, including abilities such as tactile localisation, tactile size perception, and position sense. These representations show remarkably large and stereotyped distortions of represented body size and shape. Intriguingly, these distortions appear to mirror distortions characteristic of somatosensory maps, though in attenuated form. In contrast, when asked to make overt judgments about perceived body form, participants are generally quite accurate. This pattern of results suggests that higher-level somatosensory processing relies on a class of implicit body representation, distinct from the conscious body image. I discuss the implications of these results for understanding the nature of body representation and the factors which influence it
Analytic approximations, perturbation methods, and their applications
The paper summarizes the parallel session B3 {\em Analytic approximations,
perturbation methods, and their applications} of the GR18 conference. The talks
in the session reported notably recent advances in black hole perturbations and
post-Newtonian approximations as applied to sources of gravitational waves.Comment: Summary of the B3 parallel session of the GR18 conferenc
Serum lipid responses to psyllium fiber: differences between pre- and post-menopausal, hypercholesterolemic women
<p>Abstract</p> <p>Background</p> <p>Cardiovascular disease is the leading cause of death in women and men. Psyllium, a soluble fiber has been known to reduce serum lipids. In this pilot study, we evaluated whether menopausal status would affect the serum lipid responses to psyllium fiber in women.</p> <p>Methods</p> <p>Eleven post-menopausal and eight pre-menopausal women with serum total cholesterol >200 mg/dL were included in the study. Subjects consumed their habitual diet and 15 g psyllium/d for 6 weeks. Psyllium was incorporated into cookies. Each cookie contained ≈5 g of psyllium fiber. Subjects ate one cookie in each meal.</p> <p>Results</p> <p>With psyllium fiber, total cholesterol concentration was significantly lower (≈5.2%, P < 0.05) in post-menopausal women but not in pre-menopausal women (≈1.3%). Also, there was a significant decrease in HDL-cholesterol in post-menopausal women (≈10.2%, P < 0.05). There were no significant changes observed in concentrations of LDL-cholesterol, triglycerides, apolipoprotein A1, and apolipoprotein B in both pre- and post-menopausal women with psyllium.</p> <p>Conclusion</p> <p>In this pilot study, post- and pre-menopausal, hypercholesterolemic women responded differently to psyllium fiber supplementation. Post-menopausal women would benefit from addition of psyllium to their diets in reducing the risk for heart diseases. The results of this study should be used with caution because the study was based on a small sample size.</p
Matrix representation of the shifting operation and numerical properties of the ERES method for computing the greatest common divisor of sets of many polynomials
The Extended-Row-Equivalence and Shifting (ERES) method is a matrix-based method developed for the computation of the greatest common divisor (GCD) of sets of many polynomials. In this paper we present the formulation of the shifting operation as a matrix product which allows us to study the fundamental theoretical and numerical properties of the ERES method by introducing its complete algebraic representation. Then, we analyse in depth its overall numerical stability in finite precision arithmetic. Numerical examples and comparison with other methods are also presented
Tunneling of quantum rotobreathers
We analyze the quantum properties of a system consisting of two nonlinearly
coupled pendula. This non-integrable system exhibits two different symmetries:
a permutational symmetry (permutation of the pendula) and another one related
to the reversal of the total momentum of the system. Each of these symmetries
is responsible for the existence of two kinds of quasi-degenerated states. At
sufficiently high energy, pairs of symmetry-related states glue together to
form quadruplets. We show that, starting from the anti-continuous limit,
particular quadruplets allow us to construct quantum states whose properties
are very similar to those of classical rotobreathers. By diagonalizing
numerically the quantum Hamiltonian, we investigate their properties and show
that such states are able to store the main part of the total energy on one of
the pendula. Contrary to the classical situation, the coupling between pendula
necessarily introduces a periodic exchange of energy between them with a
frequency which is proportional to the energy splitting between
quasi-degenerated states related to the permutation symmetry. This splitting
may remain very small as the coupling strength increases and is a decreasing
function of the pair energy. The energy may be therefore stored in one pendulum
during a time period very long as compared to the inverse of the internal
rotobreather frequency.Comment: 20 pages, 11 figures, REVTeX4 styl
Evolution of Inhomogeneous Condensates after Phase Transitions
Using the O(4) linear model, we address the topic of non-equilibrium
relaxation of an inhomogeneous initial configuration due to quantum and thermal
fluctuations. The space-time evolution of an inhomogeneous fluctuation of the
condensate in the isoscalar channel decaying via the emission of pions in the
medium is studied within the context of disoriented chiral condensates. We use
out of equilibrium closed time path methods in field theory combined with the
amplitude expansion. We give explicit expressions for the asymptotic space-time
evolution of an initial inhomogeneous configuration including the contribution
of thresholds at zero and non-zero temperature. At non-zero temperature we find
new relaxational processes due to thermal cuts that have no counterpart in the
homogeneous case. Within the one-loop approximation, we find that the space
time evolution of such inhomogeneous configuration out of equilibrium is
effectively described in terms of a rapidity dependent temperature
as well as a rapidity dependent decay rate
. This rate is to be interpreted as the
production minus absorption rate of pions in the medium and approaches the zero
temperature value at large rapidities. An initial configuration localized on a
bounded region spreads and decays in spherical waves with slower relaxational
dynamics at large rapidity.Comment: 25 pages Revtex 3.0, two figures available upon reques
- …