4,231 research outputs found
Subspace Least Squares Multidimensional Scaling
Multidimensional Scaling (MDS) is one of the most popular methods for
dimensionality reduction and visualization of high dimensional data. Apart from
these tasks, it also found applications in the field of geometry processing for
the analysis and reconstruction of non-rigid shapes. In this regard, MDS can be
thought of as a \textit{shape from metric} algorithm, consisting of finding a
configuration of points in the Euclidean space that realize, as isometrically
as possible, some given distance structure. In the present work we cast the
least squares variant of MDS (LS-MDS) in the spectral domain. This uncovers a
multiresolution property of distance scaling which speeds up the optimization
by a significant amount, while producing comparable, and sometimes even better,
embeddings.Comment: Scale Space and Variational Methods in Computer Vision: 6th
International Conference, SSVM 2017, Kolding, Denmark, June 4-8, 201
Non-Rigid Puzzles
Shape correspondence is a fundamental problem in computer graphics and vision, with applications in various problems including animation, texture mapping, robotic vision, medical imaging, archaeology and many more. In settings where the shapes are allowed to undergo non-rigid deformations and only partial views are available, the problem becomes very challenging. To this end, we present a non-rigid multi-part shape matching algorithm. We assume to be given a reference shape and its multiple parts undergoing a non-rigid deformation. Each of these query parts can be additionally contaminated by clutter, may overlap with other parts, and there might be missing parts or redundant ones. Our method simultaneously solves for the segmentation of the reference model, and for a dense correspondence to (subsets of) the parts. Experimental results on synthetic as well as real scans demonstrate the effectiveness of our method in dealing with this challenging matching scenario
Functional maps representation on product manifolds
We consider the tasks of representing, analysing and manipulating maps between shapes. We model maps as densities over the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a geometry of its own, which we exploit to define map operations in the spectral domain; we also derive relationships with other existing representations (soft maps and functional maps). To apply these ideas in practice, we discretize product manifolds and their Laplace–Beltrami operators, and we introduce localized spectral analysis of the product manifold as a novel tool for map processing. Our framework applies to maps defined between and across 2D and 3D shapes without requiring special adjustment, and it can be implemented efficiently with simple operations on sparse matrices
- …
