36 research outputs found

    Diabetic state of human coronary artery endothelial cells results in altered effects of bone mesenchymal stem cell-derived extracellular vesicles.

    No full text
    Human bone mesenchymal stem cell-derived extracellular vesicles (HBMSC-EV) have been used successfully in animal models of myocardial ischemia, yet have dampened effects in metabolic syndrome through unknown mechanisms. This study demonstrates the basal differences between non-diabetic human coronary artery endothelial cells (HCAEC) and diabetic HCAEC (DM-HCAEC), and how these cells respond to the treatment of HBMSC-EV. HCAEC and DM-HCAEC were treated with HBMSC-EV for 6 h. Proteomics, western blot analysis, and tube formation assays were performed. Key metabolic, growth, and stress/starvation cellular responses were significantly altered in DM-HCAEC in comparison to that of HCAEC at baseline. Proteomics demonstrated increased phosphorus metabolic process and immune pathways and decreased RNA processing and biosynthetic pathways in DM-HCAEC. Similar to previous in vivo findings, HCAEC responded to the HBMSC-EV with regenerative and anti-inflammatory effects through the upregulation of multiple RNA pathways and downregulation of immune cell activation pathways. In contrast, DM-HCAEC had a significantly diminished response to HBMSC-EV, likely due to the baseline abnormalities in DM-HCAEC. To achieve the full benefits of HBMSC-EV and for a successful transition of this potential therapeutic agent to clinical studies, the abnormalities found in DM-HCAEC will need to be further studied

    Sitagliptin therapy improves myocardial perfusion and arteriolar collateralization in chronically ischemic myocardium: A pilot study

    No full text
    Abstract Dipeptidyl peptidase 4 inhibitors (DPP4i) may be cardioprotective based on several small animal and clinical studies, though randomized control trials have demonstrated limited benefit. Given these discrepant findings, the role of these agents in chronic myocardial disease, particularly in the absence of diabetes, is still poorly understood. The purpose of this study was to determine the effects of sitagliptin, a DPP4i, on myocardial perfusion and microvessel density in a clinically relevant large animal model of chronic myocardial ischemia. Normoglycemic Yorkshire swine underwent ameroid constrictor placement to the left circumflex artery to induce chronic myocardial ischemia. Two weeks later, pigs received either no drug (CON, n = 8) or 100 mg oral sitagliptin (SIT) daily (n = 5). Treatment continued for 5 weeks, followed by hemodynamic measurements, euthanasia, and tissue harvest of ischemic myocardium. There were no significant differences in myocardial function between CON and SIT as measured by stroke work (p > 0.5), cardiac output (p = 0.22), and end‐systolic elastance (p = 0.17). SIT was associated with increased absolute blood flow at rest (17% increase, IQR 12–62, p = 0.045) and during pacing (89% increase, IQR 83–105, p = 0.002). SIT was also associated with improved arteriolar density (p = 0.045) compared with CON, without changes in capillary density (p = 0.72). SIT was associated with increased expression of pro‐arteriogenic markers MCP‐1 (p = 0.003), TGFß (p = 0.03), FGFR1 (p = 0.002), and ICAM‐1 (p = 0.03), with a trend toward an increase in the ratio of phosphorylated/active PLCγ1 to total PLCγ1 (p = 0.11) compared with CON. In conclusion, in chronically ischemic myocardium, sitagliptin improves myocardial perfusion and arteriolar collateralization via the activation of pro‐arteriogenic signaling pathways

    Intramyocardial injection of hypoxia-conditioned extracellular vesicles modulates apoptotic signaling in chronically ischemic myocardium.

    No full text
    OBJECTIVE: Limited treatments exist for nonoperative chronic coronary artery disease. Previously, our laboratory has investigated extracellular vesicle (EV) therapy as a potential treatment for chronic coronary artery disease using a swine model and demonstrated improved cardiac function in swine treated with intramyocardial EV injection. Here, we seek to investigate the potential cardiac benefits of EVs by using hypoxia-conditioned EVs (HEV). Specifically, this study aims to investigate the effect of HEV on apoptosis in chronically ischemic myocardium in swine. METHODS: Fourteen Yorkshire swine underwent placement of an ameroid constrictor on the left circumflex artery. Two weeks later, swine underwent redo left thoracotomy with injection of either saline (control, n = 7) or HEVs (n = 7). After 5 weeks, swine were euthanized for tissue collection. Terminal deoxynucleotidyl transferase dUTP nick end labeling was used to quantify apoptosis. Immunoblotting was used for protein quantification. RESULTS: Terminal deoxynucleotidyl transferase dUTP nick end labeling staining showed a decrease in apoptosis in the HEV group compared with the control ( CONCLUSIONS: In chronic myocardial ischemia, treatment with HEV results in a decrease in overall apoptosis, possibly through the activation of both pro-survival and anti-apoptotic signaling pathways

    Comparative Analysis of Normoxia- and Hypoxia-Modified Extracellular Vesicle Therapy in Function, Perfusion, and Collateralization in Chronically Ischemic Myocardium

    No full text
    We have previously shown that normoxia serum-starved extracellular vesicle (EV) therapy improves myocardial function, perfusion, and angiogenesis in a swine model of chronic myocardial ischemia. Hypoxia-modified EVs have increased abundance of anti-oxidant, pro-angiogenic, and pro-survival proteins. The purpose of this study is to investigate the differential effects of normoxia serum-starved EVs and hypoxia-modified EVs on myocardial function, perfusion, and microvascular density in chronically ischemic myocardium. Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic myocardial ischemia. Two weeks later, the pigs underwent intramyocardial injection of either normoxia serum-starved EVs (NOR, n = 10) or hypoxia-modified EVs (HYP, n = 7). Five weeks later, pigs were euthanized, and ischemic myocardium was harvested. Hypoxia EV treatment was associated with improved contractility compared to NOR, as well as improved capillary density, without changes in arteriolar density. There were trends towards improved perfusion at rest and during pacing in the HYP group compared to NOR. Ischemic myocardium in the HYP group had increased pro-angiogenic Akt and ERK signaling and decreased expression of anti-angiogenic markers compared to the NOR group. In the setting of chronic myocardial ischemia, hypoxia-modified EVs may enhance contractility, capillary density, and angiogenic signaling pathways compared to normoxia serum-starved EVs

    Intramyocardial Injection of Hypoxia-Conditioned Extracellular Vesicles Modulates Response to Oxidative Stress in the Chronically Ischemic Myocardium

    No full text
    Introduction: Patients with advanced coronary artery disease (CAD) who are not eligible for stenting or surgical bypass procedures have limited treatment options. Extracellular vesicles (EVs) have emerged as a potential therapeutic target for the treatment of advanced CAD. These EVs can be conditioned to modify their contents. In our previous research, we demonstrated increased perfusion, decreased inflammation, and reduced apoptosis with intramyocardial injection of hypoxia-conditioned EVs (HEVs). The goal of this study is to further understand the function of HEVs by examining their impact on oxidative stress using our clinically relevant and extensively validated swine model of chronic myocardial ischemia. Methods: Fourteen Yorkshire swine underwent a left thoracotomy for the placement of an ameroid constrictor on the left circumflex coronary artery to model chronic myocardial ischemia. After two weeks of recovery, the swine underwent a redo thoracotomy with injection of either HEVs (n = 7) or a saline control (CON, n = 7) into the ischemic myocardium. Five weeks after injection, the swine were subjected to terminal harvest. Protein expression was measured using immunoblotting. OxyBlot analysis and 3-nitrotyrosine staining were used to quantify total oxidative stress. Results: There was a significant increase in myocardial expression of the antioxidants SOD 2, GPX-1, HSF-1, UCP-2, catalase, and HO-1 (all p ≤ 0.05) in the HEV group when compared to control animals. The HEVs also exhibited a significant increase in pro-oxidant NADPH oxidase (NOX) 1, NOX 3, p47phox, and p67phox (all p ≤ 0.05). However, no change was observed in the expression of NFkB, KEAP 1, and PRDX1 (all p > 0.05) between the HEV and CON groups. There were no significant differences in total oxidative stress as determined by OxyBlot and 3-nitrotyrosine staining (p = 0.64, p = 0.32) between the groups. Conclusions: Administration of HEVs in ischemic myocardium induces a significant increase in pro- and antioxidant proteins without a net change in total oxidative stress. These findings suggest that HEV-induced changes in redox signaling pathways may play a role in increased perfusion, decreased inflammation, and reduced apoptosis in ischemic myocardium. Further studies are required to determine if HEVs alter the net oxidative stress in ischemic myocardium at an earlier time point of HEV administration

    Sodium-glucose co-transporter 2 inhibitor canagliflozin modulates myocardial metabolism and inflammation in a swine model for chronic myocardial ischemia.

    No full text
    BACKGROUND: Inflammation and disruption of cardiac metabolism are prevalent in the setting of myocardial ischemia. Canagliflozin, a sodium-glucose costransporter-2 inhibitor, has beneficial effects on the heart, though the precise mechanisms are unknown. This study investigated the effects of canagliflozin therapy on metabolic pathways and inflammation in ischemic myocardial tissue using a swine model of chronic myocardial ischemia. METHODS: Sixteen Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic ischemia. Two weeks later, pigs received either no drug (n = 8) or 300 mg canagliflozin (n = 8) daily. Five weeks later, pigs underwent terminal harvest and tissue collection. RESULTS: Canagliflozin treatment was associated with a trend toward decreased expression of fatty acid oxidation inhibitor acetyl-CoA carboxylase and decreased phosphorylated/inactivated acetyl-CoA carboxylase, a promotor of fatty acid oxidation, compared with control ischemic myocardium (P = .08, P = .03). There was also a significant modulation in insulin resistance markers p-IRS1, p-PKCα, and phosphoinositide 3-kinase in ischemic myocardium of the canagliflozin group compared with the control group (all P \u3c .05). Canagliflozin treatment was associated with a significant increase in inflammatory markers interleukin 6, interleukin 17, interferon-gamma, and inducible nitric oxide synthase (all P \u3c .05). There was a trend toward decreased expression of the anti-inflammatory cytokines interleukin 10 (P = .16) and interleukin 4 (P = .31) with canagliflozin treatment. CONCLUSION: The beneficial effects of canagliflozin therapy appear to be associated with inhibition of fatty acid oxidation and enhancement of insulin signaling in ischemic myocardium. Interestingly, canagliflozin appears to increase the levels of several inflammatory markers, but further studies are required to better understand how canagliflozin modulates inflammatory signaling pathways

    Crafting a Rigorous, Clinically Relevant Large Animal Model of Chronic Myocardial Ischemia: What Have We Learned in 20 Years?

    No full text
    The past several decades have borne witness to several breakthroughs and paradigm shifts within the field of cardiovascular medicine, but one component that has remained constant throughout this time is the need for accurate animal models for the refinement and elaboration of the hypotheses and therapies crucial to our capacity to combat human disease. Numerous sophisticated and high-throughput molecular strategies have emerged, including rational drug design and the multi-omics approaches that allow extensive characterization of the host response to disease states and their prospective resolutions, but these technologies all require grounding within a faithful representation of their clinical context. Over this period, our lab has exhaustively tested, progressively refined, and extensively contributed to cardiovascular discovery on the basis of one such faithful representation. It is the purpose of this paper to review our porcine model of chronic myocardial ischemia using ameroid constriction and the subsequent myriad of physiological and molecular–biological insights it has allowed our lab to attain and describe. We hope that, by depicting our methods and the insight they have yielded clearly and completely—drawing for this purpose on comprehensive videographic illustration—other research teams will be empowered to carry our work forward, drawing on our experience to refine their own investigations into the pathogenesis and eradication of cardiovascular disease

    Intramyocardial injection of hypoxia-conditioned extracellular vesicles modulates apoptotic signaling in chronically ischemic myocardiumCentral MessagePerspective

    No full text
    Objective: Limited treatments exist for nonoperative chronic coronary artery disease. Previously, our laboratory has investigated extracellular vesicle (EV) therapy as a potential treatment for chronic coronary artery disease using a swine model and demonstrated improved cardiac function in swine treated with intramyocardial EV injection. Here, we seek to investigate the potential cardiac benefits of EVs by using hypoxia-conditioned EVs (HEV). Specifically, this study aims to investigate the effect of HEV on apoptosis in chronically ischemic myocardium in swine. Methods: Fourteen Yorkshire swine underwent placement of an ameroid constrictor on the left circumflex artery. Two weeks later, swine underwent redo left thoracotomy with injection of either saline (control, n = 7) or HEVs (n = 7). After 5 weeks, swine were euthanized for tissue collection. Terminal deoxynucleotidyl transferase dUTP nick end labeling was used to quantify apoptosis. Immunoblotting was used for protein quantification. Results: Terminal deoxynucleotidyl transferase dUTP nick end labeling staining showed a decrease in apoptosis in the HEV group compared with the control (P = .049). The HEV group exhibited a significant increase in the anti-apoptotic signaling molecule phospho-BAD (P = .005), a significant decrease in B-cell lymphoma 2 (P = .006) and an increase in the phospho-B-cell lymphoma to B-cell lymphoma 2 ratio (P < .001). Furthermore, the HEV group exhibited increased levels of prosurvival signaling markers including phosphoinositide 3-kinase, phosphor-extracellular signal-regulated kinase 1/2, phospho-forkhead box protein O1, and phospho-protein kinase B to protein kinase B ratio (all P < .05). Conclusions: In chronic myocardial ischemia, treatment with HEV results in a decrease in overall apoptosis, possibly through the activation of both pro-survival and anti-apoptotic signaling pathways
    corecore