441 research outputs found

    Proper Motion of Pulsar B1800-21

    Get PDF
    We report high angular resolution, multi-epoch radio observations of the young pulsar PSR B1800-21. Using two pairs of data sets, each pair spanning approximately a ten year period, we calculate the proper motion of the pulsar. We obtain a proper motion of mu_alpha=11.6 +- 1.8 mas/yr, mu_delta=14.8 +- 2.3 mas/yr, which clearly indicates a birth position at the extreme edge of the W30 supernova remnant. Although this does not definitively rule out an association of W30 and PSR B1800-21, it does not support an association.Comment: 13 pages, 1 color figure. Replaced with version accepted for publication in Astrophysical Journa

    Precision Astrometry with the Very Long Baseline Array: Parallaxes and Proper Motions for 14 Pulsars

    Full text link
    Astrometry can bring powerful constraints to bear on a variety of scientific questions about neutron stars, including their origins, astrophysics, evolution, and environments. Using phase-referenced observations at the VLBA, in conjunction with pulsar gating and in-beam calibration, we have measured the parallaxes and proper motions for 14 pulsars. The smallest measured parallax in our sample is 0.13+-0.02 mas for PSR B1541+09, which has a most probable distance of 7.2+1.3-1.1 kpc. We detail our methods, including initial VLA surveys to select candidates and find in-beam calibrators, VLBA phase-referencing, pulsar gating, calibration, and data reduction. The use of the bootstrap method to estimate astrometric uncertainties in the presence of unmodeled systematic errors is also described. Based on our new model-independent estimates for distance and transverse velocity, we investigate the kinematics and birth sites of the pulsars and revisit models of the Galactic electron density distribution. We find that young pulsars are moving away from the Galactic plane, as expected, and that age estimates from kinematics and pulsar spindown are generally in agreement, with certain notable exceptions. Given its present trajectory, the pulsar B2045-16 was plausibly born in the open cluster NGC 6604. For several high-latitude pulsars, the NE2001 electron density model underestimates the parallax distances by a factor of two, while in others the estimates agree with or are larger than the parallax distances, suggesting that the interstellar medium is irregular on relevant length scales. The VLBA astrometric results for the recycled pulsar J1713+0747 are consistent with two independent estimates from pulse timing, enabling a consistency check between the different reference frames.Comment: 16 pages, 9 figures, 4 tables; results unchanged; revised version accepted by Ap

    Proper Motions of PSRs B1757-24 and B1951+32: Implications for Ages and Associations

    Full text link
    Over the last decade, considerable effort has been made to measure the proper motions of the pulsars B1757-24 and B1951+32 in order to establish or refute associations with nearby supernova remnants and to understand better the complicated geometries of their surrounding nebulae. We present proper motion measurements of both pulsars with the Very Large Array, increasing the time baselines of the measurements from 3.9 yr to 6.5 yr and from 12.0 yr to 14.5 yr, respectively, compared to previous observations. We confirm the non-detection of proper motion of PSR B1757-24, and our measurement of (mu_a, mu_d) = (-11 +/- 9, -1 +/- 15) mas yr^{-1} confirms that the association of PSR B1757-24 with SNR G5.4-1.2 is unlikely for the pulsar characteristic age of 15.5 kyr, although an association can not be excluded for a significantly larger age. For PSR B1951+32, we measure a proper motion of (mu_a, mu_d) = (-28.8 +/- 0.9, -14.7 +/- 0.9) mas yr^{-1}, reducing the uncertainty in the proper motion by a factor of two compared to previous results. After correcting to the local standard of rest, the proper motion indicates a kinetic age of ~51 kyr for the pulsar, assuming it was born near the geometric center of the supernova remnant. The radio-bright arc of emission along the pulsar proper motion vector shows time-variable structure, but moves with the pulsar at an approximately constant separation ~2.5", lending weight to its interpretation as a shock structure driven by the pulsar.Comment: LaTeX file uses emulateapj.cls; 7 pages, 4 figures, to be published ApJ February 10, 2008, v674 p271-278. Revision reflects journal formatting; there are no substantial revision

    Chandra Observation of PSR B1823-13 and its Pulsar Wind Nebula

    Full text link
    We report on an observation of the Vela-like pulsar B1823-13 and its synchrotron nebula with Chandra.The pulsar's spectrum fits a power-law model with a photon index Gamma_PSR=2.4 for the plausible hydrogen column density n_H=10^{22} cm^{-2}, corresponding to the luminosity L_PSR=8*10^{31} ergs s^{-1} in the 0.5-8 keV band, at a distance of 4 kpc. The pulsar radiation likely includes magnetospheric and thermal components, but they cannot be reliably separated because of the small number of counts detected and strong interstellar absorption. The pulsar is surrounded by a compact, 25''x 10'', pulsar wind nebula (PWN) elongated in the east-west direction, which includes a brighter inner component, 7''x 3'', elongated in the northeast-southwest direction. The slope of the compact PWN spectrum is Gamma_comp=1.3, and the 0.5-8 keV luminosity is L_comp~3*10^{32} ergs s^{-1}. The compact PWN is surrounded by asymmetric diffuse emission (extended PWN) seen up to at least 2.4' south of the pulsar, with a softer spectrum (Gamma_ext=1.9), and the 0.5-8 keV luminosity L_ext~10^{33}-10^{34} ergs s^{-1}. We also measured the pulsar's proper motion using archival VLA data: \mu_\alpha=23.0+/-2.5 mas yr^{-1}, \mu_\delta=-3.9+/-3.3 mas yr^{-1}, which corresponds to the transverse velocity v_perp=440 km s^{-1}. The direction of the proper motion is approximately parallel to the elongation of the compact PWN, but it is nearly perpendicular to that of the extended PWN and to the direction towards the center of the bright VHE gamma-ray source HESS J1825-137, which is likely powered by PSR B1823-13.Comment: 13 pages, 8 figures and 3 tables; submitted to Ap

    Measurement of the Parallax of PSR B0950+08 Using the VLBA

    Full text link
    A new technique has been developed to remove the ionosphere's distorting effects from low frequency VLBI data. By fitting dispersive and non-dispersive components to the phases of multi-frequency data, the ionosphere can be effectively removed from the data without the use of {\em a priori} calibration information. This technique, along with the new gating capability of the VLBA correlator, was used to perform accurate astrometry on pulsar B0950+08, resulting in a much improved measurement of this pulsar's proper motion (μα=1.6±0.4\mu_{\alpha} = -1.6 \pm 0.4 mas/yr, μδ=29.5±0.5\mu_{\delta} = 29.5 \pm 0.5 mas/yr) and parallax (π=3.6±0.3\pi = 3.6 \pm 0.3 mas). This puts the pulsar at a distance of 280±25280 \pm 25 parsecs, about twice as far as previous estimates, but in good agreement with models of the electron density in the local bubble.Comment: 5 pages, Latex with AASTEX. Accepted for publication in Ap

    VLBA measurement of the transverse velocity of the magnetar XTE J1810-197

    Get PDF
    We have obtained observations of the magnetar XTE J1810-197 with the Very Long Baseline Array at two epochs separated by 106 days, at wavelengths of 6 cm and 3.6 cm. Comparison of the positions yields a proper motion value of 13.5+-1.0 mas/yr at an equatorial position angle of 209.4+-2.4 deg (east of north). This value is consistent with a lower-significance proper motion value derived from infrared observations of the source over the past three years, also reported here. Given its distance of 3.5+-0.5 kpc, the implied transverse velocity corrected to the local standard of rest is 212+-35 km/s (1 sigma). The measured velocity is slightly below the average for normal young neutron stars, indicating that the mechanism(s) of magnetar birth need not lead to high neutron star velocities. We also use Australia Telescope Compact Array, Very Large Array, and these VLBA observations to set limits on any diffuse emission associated with the source on a variety of spatial scales, concluding that the radio emission from XTE J1810-197 is >96% pulsed.Comment: Accepted for publication in The Astrophysical Journal. Six pages, 2 figure
    corecore