1,095 research outputs found
Entanglement properties of multipartite entangled states under the influence of decoherence
We investigate entanglement properties of multipartite states under the
influence of decoherence. We show that the lifetime of (distillable)
entanglement for GHZ-type superposition states decreases with the size of the
system, while for a class of other states -namely all graph states with
constant degree- the lifetime is independent of the system size. We show that
these results are largely independent of the specific decoherence model and are
in particular valid for all models which deal with individual couplings of
particles to independent environments, described by some quantum optical master
equation of Lindblad form. For GHZ states, we derive analytic expressions for
the lifetime of distillable entanglement and determine when the state becomes
fully separable. For all graph states, we derive lower and upper bounds on the
lifetime of entanglement. To this aim, we establish a method to calculate the
spectrum of the partial transposition for all mixed states which are diagonal
in a graph state basis. We also consider entanglement between different groups
of particles and determine the corresponding lifetimes as well as the change of
the kind of entanglement with time. This enables us to investigate the behavior
of entanglement under re-scaling and in the limit of large (infinite) number of
particles. Finally we investigate the lifetime of encoded quantum superposition
states and show that one can define an effective time in the encoded system
which can be orders of magnitude smaller than the physical time. This provides
an alternative view on quantum error correction and examples of states whose
lifetime of entanglement (between groups of particles) in fact increases with
the size of the system.Comment: 27 pages, 11 figure
Teleporting bipartite entanglement using maximally entangled mixed channels
The ability to teleport entanglement through maximally entangled mixed states
as defined by concurrence and linear entropy is studied. We show how the
teleported entanglement depends on the quality of the quantum channel used, as
defined through its entanglement and mixedness, as well as the form of the
target state to be teleported. We present new results based on the fidelity of
the teleported state as well as an experimental set-up that is immediately
implementable with currently available technology.Comment: 8 pages, 7 figures, RevTeX4, Accepted for publication in the IJQI
special issue on Distributed Quantum Information Processin
Multiparticle entanglement purification for graph states
We introduce a class of multiparticle entanglement purification protocols
that allow us to distill a large class of entangled states. These include
cluster states, GHZ states and various error correction codes all of which
belong to the class of two-colorable graph states. We analyze these schemes
under realistic conditions and observe that they are scalable, i.e. the
threshold value for imperfect local operations does not depend on the number of
parties for many of these states. When compared to schemes based on bipartite
entanglement purification, the protocol is more efficient and the achievable
quality of the purified states is larger. As an application we discuss an
experimental realization of the protocol in optical lattices which allows one
to purify cluster states.Comment: 4 pages, 2 figures; V2: some typos corrected; V3: published versio
Simple proof of confidentiality for private quantum channels in noisy environments
Complete security proofs for quantum communication protocols can be
notoriously involved, which convolutes their verification, and obfuscates the
key physical insights the security finally relies on. In such cases, for the
majority of the community, the utility of such proofs may be restricted. Here
we provide a simple proof of confidentiality for parallel quantum channels
established via entanglement distillation based on hashing, in the presence of
noise, and a malicious eavesdropper who is restricted only by the laws of
quantum mechanics. The direct contribution lies in improving the linear
confidentiality levels of recurrence-type entanglement distillation protocols
to exponential levels for hashing protocols. The proof directly exploits the
security relevant physical properties: measurement-based quantum computation
with resource states and the separation of Bell-pairs from an eavesdropper. The
proof also holds for situations where Eve has full control over the input
states, and obtains all information about the operations and noise applied by
the parties. The resulting state after hashing is private, i.e., disentangled
from the eavesdropper. Moreover, the noise regimes for entanglement
distillation and confidentiality do not coincide: Confidentiality can be
guaranteed even in situation where entanglement distillation fails. We extend
our results to multiparty situations which are of special interest for secure
quantum networks.Comment: 5 + 11 pages, 0 + 4 figures, A. Pirker and M. Zwerger contributed
equally to this work, replaced with accepted versio
- …