293 research outputs found

    Partial purification of human colonic carcinoma cells by sedimentation.

    Get PDF
    We have purified epithelial cells from human colonic tumours by velocity sedimentation in an isokinetic density gradient of Ficoll in tissue culture medium. In frozen sections of colonic carcinoma, histochemically demonstrable N-acetyl-beta-D-glucosaminidase (HDAG) was observed primarily in epithelial cells. We used this enzyme as a histochemical marker of epithelial cells. Initial suspensions of cells from colonic tumours suspended with 0-25% trypsin contained an average of 24% of the nucleated cells with HDAG. In the purest fraction obtained from gradient centrifugations, an average of 74% of the nucleated cells contained HDAG. After centrifugation, the quarter of the density gradient which contained the most rapidly sedimenting cells was purified 2-4-fold over that in the initial suspension. Cells in this zone of the gradient also gave rise to colonies in soft agar. Cells from initial suspension resulted in 15-25% as many colonies of 7 or more cells in cultures inoculated with the same number of nucleated cells. For the most part, cells obtained from the other zones of the gradient did not give rise to colonies in soft agar

    Ron knockdown and Ron monoclonal antibody IMC-RON8 sensitize pancreatic cancer to histone deacetylase inhibitors (HDACi).

    Get PDF
    Recepteur d\u27origine nantais (Ron) is overexpressed in a panel of pancreatic cancer cells and tissue samples from pancreatic cancer patients. Ron can be activated by its ligand macrophage stimulating protein (MSP), thereby activating oncogenic signaling pathways. Crosstalk between Ron and EGFR, c-Met, or IGF-1R may provide a mechanism underlying drug resistance. Thus, targeting Ron may represent a novel therapeutic strategy. IMC-RON8 is the first Ron monoclonal antibody (mAb) entering clinical trial for targeting Ron overexpression. Our studies show IMC-RON8 downmodulated Ron expression in pancreatic cancer cells and significantly blocked MSP-stimulated Ron activation, downstream Akt and ERK phosphorylation, and survivin mRNA expression. IMC-RON8 hindered MSP-induced cell migration and reduced cell transformation. Histone deacetylase inhibitors (HDACi) are reported to target expression of various genes through modification of nucleosome histones and non-histone proteins. Our work shows HDACi TSA and Panobinostat (PS) decreased Ron mRNA and protein expression in pancreatic cancer cells. PS also reduced downstream signaling of pAkt, survivin, and XIAP, as well as enhanced cell apoptosis. Interestingly, PS reduced colony formation in Ron knockdown cells to a greater extent than Ron scramble control cells in colony formation and soft agarose assays. IMC-RON8 could also sensitize pancreatic cancer cells to PS, as reflected by reduced colony numbers and size in combination treatment with IMC-RON8 and PS compared to single treatment alone. The co-treatment further reduced Ron expression and pAkt, and increased PARP cleavage compared to either treatment alone. This study suggests the potential for a novel combination approach which may ultimately be of value in treatment of pancreatic cancer

    Characterization of CDK(5) Inhibitor, 20-223 (aka CP668863) for Colorectal Cancer Therapy

    Get PDF
    Colorectal cancer (CRC) remains one of the leading causes of cancer related deaths in the United States. Currently, there are limited therapeutic options for patients suffering from CRC, none of which focus on the cell signaling mechanisms controlled by the popular kinase family, cyclin dependent kinases (CDKs). Here we evaluate a Pfizer developed compound, CP668863, that inhibits cyclin-dependent kinase 5 (CDK5) in neurodegenerative disorders. CDK5 has been implicated in a number of cancers, most recently as an oncogene in colorectal cancers. Our lab synthesized and characterized CP668863 – now called 20-223. In our established colorectal cancer xenograft model, 20-223 reduced tumor growth and tumor weight indicating its value as a potential anti-CRC agent. We subjected 20-223 to a series of cell-free and cell-based studies to understand the mechanism of its anti-tumor effects. In our hands, in vitro 20-223 is most potent against CDK2 and CDK5. The clinically used CDK inhibitor AT7519 and 20-223 share the aminopyrazole core and we used it to benchmark the 20-223 potency. In CDK5 and CDK2 kinase assays, 20-223 was ~3.5-fold and ~65.3-fold more potent than known clinically used CDK inhibitor, AT7519, respectively. Cell-based studies examining phosphorylation of downstream substrates revealed 20-223 inhibits the kinase activity of CDK5 and CDK2 in multiple CRC cell lines. Consistent with CDK5 inhibition, 20-223 inhibited migration of CRC cells in a wound-healing assay. Profiling a panel of CRC cell lines for growth inhibitory effects showed that 20-223 has nanomolar potency across multiple CRC cell lines and was on an average \u3e2-fold more potent than AT7519. Cell cycle analyses in CRC cells revealed that 20-223 phenocopied the effects associated with AT7519. Collectively, these findings suggest that 20-223 exerts anti-tumor effects against CRC by targeting CDK 2/5 and inducing cell cycle arrest. Our studies also indicate that 20-223 is a suitable lead compound for colorectal cancer therapy

    Mutations in TGFbeta-RII and BAX mediate tumor progression in the later stages of colorectal cancer with microsatellite instability

    Get PDF
    Abstract Background Microsatellite instability (MSI) occurs in 15% of colorectal cancers (CRC). The genetic targets for mutation in the MSI phenotype include somatic mutations in the transforming growth factor beta receptor typeII (TGFbetaRII), BAX, hMSH3 and hMSH6. It is not clear how mutations of these genes mediate tumor progression in the MSI pathway, and the temporal sequence of these mutations remains uncertain. In this study, early stage CRCs were examined for frameshift mutations in these target genes, and compared with late stage tumors and CRC cell lines. Methods We investigated 6 CRC cell lines and 71 sporadic CRCs, including 61 early stage cancers and 10 late stage cancers. Mutations of repetitive mononucleotide tracts in the coding regions of TGFbetaRII, BAX, hMSH3, hMSH6, IGFIIR and Fas antigen were identified by direct sequencing. Results Thirteen (18.3%) of 71 CRC, including 9/61 (14.7%) early stage cancers and 4/10 (40%) late stage cancers, were identified as MSI and analyzed for frameshift mutations. No mutation in the target genes was observed in any of the 9 early stage MSI CRCs. In contrast, frameshift mutations of TGFbetaRII, BAX, hMSH3 and hMSH6 were present in 3/4 late stage MSI tumors. There is a statistical association (p = 0.014) between mutation in any one gene and tumor stage. Conclusions TGFbetaRII, BAX, hMSH3 and hMSH6 mutations are relatively late events in the genesis of MSI CRCs. The frameshift mutations in these target genes might mediate progression from early to late stage cancer, rather than mediating the adenoma to carcinoma transition.</p
    • …
    corecore