68 research outputs found

    The kinetics of spontaneous calcium oscillations and arrhythmogenesis in the in vivo heart during ischemia/reperfusion.

    No full text
    BACKGROUND: The correlation between spontaneous calcium oscillations (S-CaOs) and arrhythmogenesis has been investigated in a number of theoretical and experimental in vitro models. There is an obvious lack of studies that directly investigate how the kinetics of S-CaOs correlates with a specific arrhythmia in the in vivo heart. OBJECTIVES: The purpose of the study is to investigate the correlation between the kinetics of S-CaOs and arrhythmogenesis in the intact heart using an experimental model of ischemia/reperfusion (I/R). METHODS: Perfused Langendorff guinea pig (GP) hearts were subjected to global I/R (10-15 minutes/10-15 minutes). The heart was stained with a voltage-sensitive dye (RH237) and loaded with a Ca2+ indicator (Rhod-2 AM). Membrane voltage (Vm) and intracellular calcium transient (Ca(i)T) were simultaneously recorded with an optical mapping system of two 16 x 16 photodiode arrays. S-CaOs were considered to arise from a localized focal site within the mapped surface when these preceded the associated membrane depolarizations by 2-15 ms. RESULTS: In 135 episodes of ventricular arrhythmias from 28 different GP experiments, 23 were linked to S-CaOs that were considered to arise from or close to the mapped epicardial window. Self-limited or sustained S-CaOs had a cycle length of 130-430 ms and could trigger propagated ventricular depolarizations. Self-limited S-CaOs that followed the basic beat action potential (AP)/Ca(i)T closely resembled phase 3 early afterdepolarizations. Fast S-CaOs could remain confined to a localized site (concealed) or exhibit varying conduction patterns. This could manifest as (1) an isolated premature beat (PB), bigeminal, or trigeminal rhythm; (2) ventricular tachycardia (VT) when a regular 2:1 conduction from the focal site develops; or (3) ventricular fibrillation (VF) when a complex conduction pattern results in wave break and reentrant excitation. CONCLUSIONS: The study examined, for the first time in the intact heart, the correlation between the kinetics of focal S-CaOs during I/R and arrhythmogenesis. S-CaOs may remain concealed or manifest as PBs, VT, or VF. A "benign looking" PB during I/R may represent "the tip of the iceberg" of an underlying potentially serious arrhythmic mechanism

    Autoimmune and inflammatory K+ channelopathies in cardiac arrhythmias: Clinical evidence and molecular mechanisms

    No full text
    Cardiac K+ channelopathies account for a significant proportion of arrhythmias and sudden cardiac death (SCD) in subjects without structural heart disease. It is well recognized that genetic defects are key factors in many cases, and in practice, the term cardiac channelopathies currently coincides with inherited cardiac channelopathies. However, mounting evidence demonstrate that not only genetic alterations but also autoimmune and inflammatory factors can cause cardiac K+-channel dysfunction and arrhythmias in the setting of a structurally normal heart. In particular, it has been demonstrated that specific autoantibodies as well as inflammatory cytokines can modulate expression and/or function of different K+ channels in the heart, resulting in a disruption of the cardiac action potential and arrhythmias/sudden cardiac death. Awareness about the existence of these newly recognized forms is essential to identify and adequately manage affected patients. In the present review, we focus on autoimmune and inflammatory K+ channelopathies as a novel mechanism for cardiac arrhythmias and analyze the recent advancements in this topic, providing complementary basic, clinical, and population health perspectives

    Functional interactions of raf and MEK with Jun-N-terminal kinase (JNK) result in a positive feedback loop on the oncogenic ras signaling pathway

    No full text
    In previous studies we have found that oncogenic (Val 12)-ras-p21 induces Xenopus laevis oocyte maturation that is selectively blocked by two ras-p21 peptides, 35-47, also called PNC-7, that blocks its interaction with raf, and 96-110, also called PNC-2, that blocks its interaction with jun-N-terminal kinase (JNK). Each peptide blocks activation of both JNK and MAP kinase (MAPK or ERK) suggesting interaction between the raf-MEK-ERK and JNK-jun pathways. We further found that dominant negative raf blocks JNK induction of oocyte maturation, again suggesting cross-talk between pathways. In this study, we have undertaken to determine where these points of cross-talk occur. First, we have immunoprecipitated injected Val 12-Ha-ras-p21 from oocytes and found that a complex forms between ras-p21 raf, MEK, MAPK, and JNK. Co-injection of either peptide, but not a control peptide, causes diminished binding of ras-p21, raf, and JNK. Thus, one site of interaction is cooperative binding of Val 12-ras-p21 to raf and JNK. Second, we have injected JNK, c-raf, and MEK into oocytes alone and in the presence of raf and MEK inhibitors and found that JNK activation is independent of the raf-MEK-MAPK pathway but that activated JNK activates raf, allowing for activation of ERK. Furthermore, we have found that constitutively activated MEK activates JNK. We have corroborated these findings in studies with isolated protein components from a human astrocyte (U-251) cell line; that is, JNK phosphorylates raf but not the reverse; MEK phosphorylates JNK but not the reverse. We further have found that JNK does not phosphorylate MAPK and that MAPK does not phosphorylate JNK. The stress-inducing agent, anisomycin, causes activation of JNK, raf, MEK, and ERK in this cell line; activation of JNK is not inhibitable by the MEK inhibitor, U0126, while activation of raf, MEK, and ERK are blocked by this agent. These results suggest that activated JNK can, in turn, activate not only jun but also raf that, in turn, activates MEK that can then cross-activate JNK in a positive feedback loop. © 2005 American Chemical Society.link_to_subscribed_fulltex

    A Review of the Cardiovascular and Anti-Atherogenic Effects of Ghrelin

    No full text
    Ghrelin is a peptide hormone produced mainly in the stomach that has widespread tissue distribution and diverse hormonal, metabolic and cardiovascular activities. The circulating ghrelin concentration increases during fasting and decreases after food intake. Ghrelin secretion may thus be initiated by food intake and is possibly controlled by nutritional factors. Lean subjects have increased levels of circulating ghrelin compared with obese subjects. Recent reports show that low plasma ghrelin is associated with elevated fasting insulin levels, insulin resistance and type 2 diabetes mellitus. Factors involved in the regulation of ghrelin secretion have not yet been defined; however, it is assumed that blood glucose levels represent a significant regulator. Recent evidence indicates that ghrelin can increase myocardial contractility, enhance vasodilatation, and has protective effect from myocardial damage. It has been shown that ghrelin may improve cardiac function through growth hormone (GH)-dependent mechanisms but there is also evidence to suggest that ghrelins cardioprotective activity is independent of GH. Recent data demonstrate that ghrelin can influence key events in atherogenesis. Thus, ghrelin may be a new target for the treatment of some cardiovascular diseases. In this review, we consider the current literature focusing on ghrelin as a potential antiatherogenic agent in the treatment of various pathophysiological conditions
    • …
    corecore