34 research outputs found

    The Transcription Factor NURR1 Exerts Concentration-Dependent Effects on Target Genes Mediating Distinct Biological Processes

    Get PDF
    The transcription factor NURR1 plays a pivotal role in the development and maintenance of neurotransmitter phenotype in midbrain dopamine neurons. Conversely, decreased NURR1 expression is associated with a number of dopamine-related CNS disorders, including Parkinson’s disease and drug addiction. In order to better understand the nature of NURR1-responsive genes and their potential roles in dopamine neuron differentiation and survival, we used a human neural cellular background (SK-N-AS cells) in which to generate a number of stable clonal lines with graded NURR1 gene expression that approximated that seen in DA cell-rich human substantia nigra. Gene expression profiling data from these NURR1-expressing clonal lines were validated by quantitative RT-PCR and subjected to bioinformatic analyses. The present study identified a large number of NURR1-responsive genes and demonstrated the potential importance of concentration-dependent NURR1 effects in the differential regulation of distinct NURR1 target genes and biological pathways. These data support the promise of NURR1-based CNS therapeutics for the neuroprotection and/or functional restoration of DA neurons

    Targeting uracil-DNA glycosylases for therapeutic outcomes using insights from virus evolution

    Get PDF
    Ung-type uracil-DNA glycosylases are frontline defenders of DNA sequence fidelity in bacteria, plants, and animals; Ungs also directly assist both innate and humoral immunity. Critically important in viral pathogenesis, whether acting for or against viral DNA persistence, Ungs also have therapeutic relevance to cancer, microbial, and parasitic diseases. Ung catalytic specificity is uniquely conserved, yet selective antiviral drugging of the Ung catalytic pocket is tractable. However, more promising precision therapy approaches present themselves via insights from viral strategies, including sequestration or adaptation of Ung for non-canonical roles. A universal Ung inhibition mechanism, converged upon by unrelated viruses, could also inform design of compounds to inhibit specific distinct Ungs. Extrapolating current developments, the character of such novel chemical entities is proposed

    A Dopaminergic Gene Cluster in the Prefrontal Cortex Predicts Performance Indicative of General Intelligence in Genetically Heterogeneous Mice

    Get PDF
    Background: Genetically heterogeneous mice express a trait that is qualitatively and psychometrically analogous to general intelligence in humans, and as in humans, this trait co-varies with the processing efficacy of working memory (including its dependence on selective attention). Dopamine signaling in the prefrontal cortex (PFC) has been established to play a critical role in animals ’ performance in both working memory and selective attention tasks. Owing to this role of the PFC in the regulation of working memory, here we compared PFC gene expression profiles of 60 genetically diverse CD-1 mice that exhibited a wide range of general learning abilities (i.e., aggregate performance across five diverse learning tasks). Methodology/Principal Findings: Animals ’ general cognitive abilities were first determined based on their aggregate performance across a battery of five diverse learning tasks. With a procedure designed to minimize false positive identifications, analysis of gene expression microarrays (comprised of <25,000 genes) identified a small number (,20) of genes that were differentially expressed across animals that exhibited fast and slow aggregate learning abilities. Of these genes, one functional cluster was identified, and this cluster (Darpp-32, Drd1a, and Rgs9) is an established modulator of dopamine signaling. Subsequent quantitative PCR found that expression of these dopaminegic genes plus one vascular gene (Nudt6) were significantly correlated with individual animal’s general cognitive performance. Conclusions/Significance: These results indicate that D1-mediated dopamine signaling in the PFC, possibly through it

    D1 Dopamine Receptor Signaling Is Modulated by the R7 RGS Protein EAT-16 and the R7 Binding Protein RSBP-1 in Caenoerhabditis elegans Motor Neurons

    Get PDF
    Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior

    Using death to one's advantage: HIV modulation of apoptosis

    Get PDF
    Infection by human immunodeficiency virus (HIV) is associated with an early immune dysfunction and progressive destruction of CD4+ T lymphocytes. This progressive disappearance of T cells leads to a lack of immune control of HIV replication and to the development of immune deficiency resulting in the increased occurrence of opportunistic infections associated with acquired immune deficiency syndrome (AIDS). The HIV-induced, premature destruction of lymphocytes is associated with the continuous production of HIV viral proteins that modulate apoptotic pathways. The viral proteins, such as Tat, Env, and Nef, are associated with chronic immune activation and the continuous induction of apoptotic factors. Viral protein expression predisposes lymphocytes, particularly CD4+ T cells, CD8+ T cells, and antigen-presenting cells, to evolve into effectors of apoptosis and as a result, to lead to the destruction of healthy, non-infected T cells. Tat and Nef, along with Vpu, can also protect HIV-infected cells from apoptosis by increasing anti-apoptotic proteins and down- regulating cell surface receptors recognized by immune system cells. This review will discuss the validity of the apoptosis hypothesis in HIV disease and the potential mechanism(s) that HIV proteins perform in the progressive T cell depletion observed in AIDS pathogenesis. Originally published Leukemia, Vol. 15, No. 3, Mar 200

    Intestinal dysbiosis in young cystic fibrosis rabbits

    No full text
    Individuals with cystic fibrosis (CF) often experience gastrointestinal (GI) abnormalities. In recent years, the intestinal microbiome has been postulated as a contributor to the development of CF-associated GI complications, hence representing a potential therapeutic target for treatment. We recently developed a rabbit model of CF, which is shown to manifest many human patient-like pathological changes, including intestinal obstruction. Here, we investigated the feces microbiome in young CF rabbits in the absence of antibiotics treatment. Stool samples were collected from seven-to nine-week-old CF rabbits (n = 7) and age-matched wild-type (WT) rabbits (n = 6). Microbiomes were investigated by iTag sequencing of 16S rRNA genes, and functional profiles were predicted using PICRUSt. Consistent with reports of those in pediatric CF patients, the fecal microbiomes of CF rabbits are of lower richness and diversity than that of WT rabbits, with a marked taxonomic and inferred functional dysbiosis. Our work identified a new CF animal model with the manifestation of intestinal dysbiosis phenotype. This model system may facilitate the research and development of novel treatments for CF-associated gastrointestinal diseases.http://deepblue.lib.umich.edu/bitstream/2027.42/174885/2/Intestinal Dysbiosis in Young Cystic Fibrosis Rabbits. .pdfPublished versio
    corecore