30 research outputs found

    Predictive Metabolic Suitability Maps for the Thermophilic Invasive Hydroid Pennaria disticha Under Future Warming Mediterranean Sea Scenarios

    Get PDF
    Temperature is a fundamental variable for all biological processes. It influences the metabolism and tolerance limits of all living organisms, affecting species phenology and distribution patterns. It also facilitates the spread of non-indigenous species and the proliferation and expansion of native outbreak-forming species. Pennaria disticha is a colonial benthic cnidarian reported to be invasive in different Indian and Pacific coastal areas, as well as a harmful member of fouling communities found in Mediterranean marine aquaculture farms. Using the most basal functional trait (i.e., thermal tolerance), we explored the potential of P. disticha to colonize different habitats across the Mediterranean Sea in future warming scenarios. Respiration rate was measured as a proxy of P. disticha metabolism under 12 different experimental temperatures. The obtained thermal tolerance dataset was used to create a thermal performance curve (TPC). We then scaled modeled curve to occurrence probability to map species potential metabolic habitat suitability and phenological shifts within the Mediterranean Sea when subjected to different warming scenarios. Prediction maps for future climatic conditions showed a potential temporal and spatial expansion of P. disticha in the Western and Central Mediterranean. The present data increases our understanding of the ecological performance and potential distribution of an invasive and outbreak-forming species. This information will contribute to the development of early warning systems and to the design and implementation of risk assessment and management plans

    Impacts of increasing temperature due to global warming on key habitat-forming species in the Mediterranean sea: Unveiling negative biotic interactions

    Get PDF
    Temperature plays a pivotal role in prey-predator interactions, acting as a potent source of disturbance that can reshape the strengths of interactions between prey and predators. This alteration can subsequently destabilize populations and trigger shifts in the dynamics of ecosystems and food webs. The rising temperatures are exerting significant impacts on Mediterranean biodiversity and community structure. These changes have the potential to influence predation dynamics among co-occurring species, each with distinct responses to the changing climate. Here, we present a case study that delves into the impact of temperature on the biotic interaction between a thermophilic predator polychaete (Hermodice carunculata) and a threatened, key structuring coral species (Astroides calycularis). Through manipulative laboratory experiments, we explored three main aspects: i) polychaete Prey Preference: the prey preference of H. carunculata, revealing that it indeed displays a distinct preference for feeding on A. calycularis over other options. ii) Temperature Effect on Predator Ingestion Rate: we examined how temperature influences the ingestion rate of the predator. Notably, we found that the predator's predation performance peaks at a temperature of 25.6 oC, which is in close proximity to the upper thermal limit of the coral. iii) Prey Metabolic Response: when exploring the metabolic response of the prey to contact with the predator, we observed an immediate reaction from the prey. This response led to a decline in the coral's feeding capability and an alteration in its metabolic functioning, effectively worsening the coral's overall performance. These findings underscore that H. carunculata not only displays a preference for consuming A. calycularis but also exhibits optimal predation performance at a temperature near the coral's upper thermal threshold. Furthermore, the prey's response to the presence of the predator has rapid and detrimental consequences, negatively impacting the coral's metabolic function. Comprehending the repercussions of environmental change on biotic interactions holds paramount importance. It allows us to forecast and manage the trajectory and conservation efforts of biodiversity under current and projected climate change conditions

    Effect of Acute Thermal Stress Exposure on Ecophysiological Traits of the Mediterranean Sponge Chondrilla nucula: Implications for Climate Change

    Get PDF
    As a result of climate change, the Mediterranean Sea has been exposed to an increase in the frequency and intensity of marine heat waves in the last decades, some of which caused mass mortality events of benthic invertebrates, including sponges. Sponges are an important component of benthic ecosystems and can be the dominant group in some rocky shallow-water areas in the Mediterranean Sea. In this study, we exposed the common shallow-water Mediterranean sponge Chondrilla nucula (Demospongiae: Chondrillidae) to six different temperatures for 24 h, ranging from temperatures experienced in the field during the year (15, 19, 22, 26, and 28 °C) to above normal temperatures (32 °C) and metabolic traits (respiration and clearance rate) were measured. Both respiration and clearance rates were affected by temperature. Respiration rates increased at higher temperatures but were similar between the 26 and 32 °C treatments. Clearance rates decreased at temperatures >26 °C, indicating a drop in food intake that was not reflected by respiration rates. This decline in feeding, while maintaining high respiration rates, may indicate a negative energy balance that could affect this species under chronic or repeated thermal stress exposure. C. nucula will probably be a vulnerable species under climate change conditions, affecting its metabolic performance, ecological functioning and the ecosystem services it provides

    effects of global warming on reproduction and potential dispersal of mediterranean cnidarians

    Get PDF
    Water temperature directly affects life cycles, reproductive periods, and metabolism of organisms living the oceans, especially in the surface zones. Due to the ocean warming, changes in water stratification and primary productivity are affecting trophic chains in sensitive world areas, such as the Mediterranean Sea. Benthic and pelagic cnidarians exhibit complex responses to climatic conditions. For example, the structure and phenology of the Mediterranean hydrozoan community displayed marked changes in species composition, bathymetric distribution, and reproductive timing over the last decades. The regional species pool remained stable in terms of species numbers but not in terms of species identity. When the Scyphozoa group is considered, we observe that Pelagia noctiluca (among the most abundant jellyfish in the Mediterranean Sea and eastern Atlantic waters) has increasingly frequent massive outbreaks associated to warmer winters. Variations in metabolic activities, such as respiration and excretion, are strongly temperature-dependent, with direct increment of energetic costs with jellyfish size and temperature, leading to growth rate reduction. Water temperature affects sexual reproduction through changes in the energy storage and gonad development cycles. Anthozoan life cycles depend also on primary productivity and temperature: gonadal production and spawning are tightly related in shallow populations (0–30 m depth) with the spring-summer temperature trends and autumn food availability. Overall, the energy transferred from the mother colonies to the offspring may decrease, negatively affecting their potential to settle, metamorphose and feed during the first months of their lives, eventually impairing the dominance of long-living cnidarian suspension feeders in shallow benthic habitats. In this review, we describe the already ongoing effects of sea warming on several features of cnidarian reproduction, trying to elucidate how reproductive traits and potential dispersion will be affected by the cascade effects of increasing temperature in the Mediterranean Sea

    Reproductive and bloom patterns of Pelagia noctiluca in the Strait of Messina, Italy

    Get PDF
    Investigations on sexual reproduction of jellyfish are essential to understanding mechanisms and patterns of outbreaks formation. Pelagia noctiluca (Forskål, 1775) (Scyphozoa) is known as the predominant jellyfish species with direct development in Western and Central Mediterranean Sea. In this paper we used integrated morphometric, histological, and biochemical approaches to investigate the annual reproductive biology of P. noctiluca from the Strait of Messina (South Thyrrenian Sea), a key proliferation area for this species due to favourable temperatures and high productivity. From November 2011 to September 2012, P. noctiluca sexual reproduction occurred throughout the year, with two seasonal peaks (autumn, spring) of spawning and embryonic development. Gonads of female P. noctiluca were characterized by a large amount of mature eggs of small size (diameter < 200 mm) during high food availability, whereas fewer, larger eggs (diameter > 200 mm) were detected during low availability of prey. Two morphometric indexes were applied: the Gonad-Somatic Index (GSI, gonadal/somatic tissue dry weight ratio) and Fecundity Index (FI, n eggs mm2 * gonadal dry weight). The FI showed longer spawning periods than the GSI, providing a better causal-mechanistic explanation for the year-round occurrence of P. noctiluca in the Strait of Messina. Protein contents of the gonads changed seasonally, with the highest concentrations during the pre-spawning periods. We suggest that investigations on jellyfish sexual reproduction can provide biological information relevant for understanding mechanisms of jellyfish blooms as well as for the management of coastal zones affected by outbreaks of gelatinous species

    Reproductive cycle and gonadal output of the Lessepsian jellyfish Cassiopea andromeda in NW Sicily (Central Mediterranean Sea)

    Get PDF
    Knowledge of the reproductive strategy is a key prerequisite to predict population dynamics and potential invasiveness of both native and non-indigenous outbreak-forming species. In 2014 the Lessepsian upside-down jellyfish Cassiopea andromeda reached the harbor of Palermo (NW Sicily, Thyrrenian Sea), to date its established westernmost outpost in the Mediterranean Sea. To predict C. andromeda reproductive success in its novel habitat, gonad histology was carried out to record the number and size of mature and immature oocytes. Both male and female simultaneously presented gametes at all stages of development suggesting an asynchronous, yet apparently continuous, reproduction strategy. Indeed, oogenesis was observed throughout the year from pre-vitellogenic, vitellogenetic, and late-vitellogenetic to mature oocytes suggesting multiple reproductive events, as known in other Mediterranean Rhizostomeae. Oocytes were found from May to December, with two seasonal peaks of abundance (late spring = 392 and autumn = 272), suggesting imminent spawning events. Further, jellyfish size varied significantly throughout the year, with maximum diameter (up to 24 cm) in summer, and minimum diameter (6 cm) in winter. Small-sized jellyfish in winter belong to the new cohort, most probably arising from intense summer strobilation of polyps. Late spring fertilization, planula development, and metamorphosis, followed by polyp strobilation in the summer months, may explain the late appearance of a new jellyfish cohort, likely coincident with that recorded throughout winter

    Changes of energy fluxes in marine animal forests of the anthropocene: Factors shaping the future seascape

    Get PDF
    Climate change is already transforming the seascapes of our oceans by changing the energy availability and the metabolic rates of the organisms. Among the ecosystem-engineering species that structure the seascape, marine animal forests (MAFs) are the most widespread. These habitats, mainly composed of suspension feeding organisms, provide structural complexity to the sea floor, analogous to terrestrial forests. Because primary and secondary productivity is responding to different impacts, in particular to the rapid ongoing environmental changes driven by climate change, this paper presents some directions about what could happen to different MAFs depending on these fast changes. Climate change could modify the resistance or resilience of MAFs, potentially making them more sensitive to impacts from anthropic activities (i.e. fisheries and coastal management), and vice versa, direct impacts may amplify climate change constraints in MAFs. Such changes will have knock-on effects on the energy budgets of active and passive suspension feeding organisms, as well as on their phenology, larval nutritional condition, and population viability. How the future seascape will be shaped by the new energy fluxes is a crucial question that has to be urgently addressed to mitigate and adapt to the diverse impacts on natural systems

    The aquaculture supply chain in the time of covid-19 pandemic: vulnerability, resilience, solutions and priorities at the global scale

    Get PDF
    The COVID-19 global pandemic has had severe, unpredictable and synchronous impacts on all levels of perishable food supply chains (PFSC), across multiple sectors and spatial scales. Aquaculture plays a vital and rapidly expanding role in food security, in some cases overtaking wild caught fisheries in the production of high-quality animal protein in this PFSC. We performed a rapid global assessment to evaluate the effects of the COVID-19 pandemic and related emerging control measures on the aquaculture supply chain. Socio-economic effects of the pandemic were analysed by surveying the perceptions of stakeholders, who were asked to describe potential supply-side disruption, vulnerabilities and resilience patterns along the production pipeline with four main supply chain components: a) hatchery, b) production/processing, c) distribution/logistics and d) market. We also assessed different farming strategies, comparing land- vs. sea-based systems; extensive vs. intensive methods; and with and without integrated multi-trophic aquaculture, IMTA. In addition to evaluating levels and sources of economic distress, interviewees were asked to identify mitigation solutions adopted at local / internal (i.e., farm-site) scales, and to express their preference on national / external scale mitigation measures among a set of a priori options. Survey responses identified the potential causes of disruption, ripple effects, sources of food insecurity, and socio-economic conflicts. They also pointed to various levels of mitigation strategies. The collated evidence represents a first baseline useful to address future disaster-driven responses, to reinforce the resilience of the sector and to facilitate the design reconstruction plans and mitigation measures, such as financial aid strategies.publishe

    The buffer effect of canopy-forming algae on vermetid reefs' functioning: A multiple stressor case study

    No full text
    Biodiversity plays a key role for our planet by buffering ongoing and future changes in environmental conditions. We tested if canopy-forming algae enhancing biodiversity (CEB) in a Mediterranean intertidal reef ecological community could alleviate the effect of stressors (heat waves and pollution from sewage) on community metabolic rates (as expressed by oxygen consumption) used as a proxy of community functioning. CEB exerted a buffering effect related to the properties of stressor: physical-pulsing (heat wave) and chronic-trophic (sewage). After a simulated heat wave, CEB was effective in buffering the impacts of detrimental temperatures on the functioning of the community. In reefs exposed to chronic sewage effluents, benefits derived from CEB were less evident, which is likely due to the stressor's contextual action. The results support the hypothesis that ecological responses depend on stressor typology acting at local level and provide insights for improving management measures to mitigate anthropogenic disturbance
    corecore